
Provable Security in Cryptography

Thomas Baignères

EPFL
http://lasecwww.epfl.ch

May 29, 2007 (ver. 25)

These lecture notes are a compilation of some of my readings while I was preparing two lectures given
at EPFL on provable security in cryptography. They are essentially based on a book chapter from David
Pointcheval called “Provable Security for Public Key Schemes” [24], on Victor Shoup’s tutorial on game
playing techniques [30], on Coron’s Crypto’00 paper on the exact security of the Full Domain Hash [9],
and on Victor Shoup’s Journal of Cryptology paper on OAEP+ [28,29].

1 Provable Security

Although the origin of cryptography seems to date back to the invention of writing, no provably secure
cryptosystem (a notion that will be made clearer later) was known before Rabin’s cryptosystem, published
in 1979 [18, 25]. Yet, several cryptosystems designed during the past 30 years provide very little (not to
say no) security proofs. Some of these algorithms are widely used in nowadays secure applications.
For example, if it was not for the work of Keliher [15], the AES [10] (the block cipher adopted as an
encryption standard by the U.S. government) would not provide any (convincing) security proof against
linear cryptanalysis [20] (a very powerful, yet very specific attack). The strongest argument in favor
of the security of the AES is that, until now, none of the smart cryptanalytic attempts to break it
was successful. This fact, added to the very nice design rationales on which the AES relies, are often
considered as sufficient from a security perspective. Are we done then? Not quite. It sometimes takes
time to break a cryptographic scheme. For example the Chor-Rivest cryptosystem [8] resisted to almost
15 years of cryptanalytic efforts, until it was completely broken by Vaudenay [32]. Obviously, the lack of
successful cryptanalytic attack shall not replace a security proof.

But what do cryptographers exactly mean by provable security? Informally, a scheme is provably
secure if it comes with a rigorous logical argument that shows that if the security of this scheme is
compromised then

– either some simple logical contradiction occurs (Information theoretic security or security against
computationally unbounded adversaries),

– or some well-studied problem can be solved efficiently (security against computationally bounded
adversaries).

In the latter case, one must first assume the hardness of some problem (such as factorization of large
integers) or the existence of some primitive (such as a one-way function f , for which it is easy to compute
f(x), but given y = f(x) it is computationally intractable to recover x). In order to prove the security
of a cryptographic scheme, one shows that a potential adversary against the scheme (i.e., an algorithm
that breaks the scheme) can be used as a subroutine in order to efficiently break the computational
assumption. We say that the cryptographic scheme reduces to the computational assumption (a notion
borrowed from complexity theory). The reduction is considered to be efficient when both the time and
space complexities of the routine against the computational assumption are bounded by a polynomial
in the size of some security input (e.g., the size an RSA modulus). However, even the existence of such
a proof may have little impact on practical security. To illustrate this fact we borrow an example from
Koblitz and Menezes [17].

The Blum-Blum-Shub generator [6] is a cryptographically secure pseudorandom bit generator. Let
N = p · q be the n-bit product of two large primes both congruent to 3 mod 4. Let x0 < N be a
random integer and define xi = x2

i−1 mod N for i = 1, . . . , k. The pseudorandom bit sequence made
of the O(log log N) least significant bits of the xi’s is cryptographically secure [33], i.e., no polynomial-
time statistical test can distinguish it from a perfectly random bitstring of the same length under the
assumption that factoring N is intractable. More precisely, if the running time of the statistical test is

bounded by T and its advantage1 is bounded by ε, then it was shown by Sidorenko and Schoenmakers [31]
that one can securely extract the j least significant bits of each xi, provided that

T ≤ L(n)
36n(log n)δ−2

− 22j+9nδ−4, (1)

where δ = (2j − 1)−1(ε/(kj)) and L(n) = 2.8 · 10−3 exp
(
1.9229(n ln 2)1/3(ln(n ln 2))2/3

)
which is the

heuristic expected running time of the number field sieve to factor a random n-bit Blum integer. For
n = 1024, j = 10, k = 106, and ε = 0.01, the bound given by (1) is close to −2−200, which is quite
meaningless. To obtain a positive bound with this specific choice of j,k, and ε, n must be larger than
20000 whereas in practice the typical size for a modulus would be 2048 bits.

2 From Provable Security to Practical Security or the Need for Idealized
Models.

The problem illustrated in the last section with the BBS pseudorandom generator finds a solution in
the notion of exact security [5] or concrete security [23]. The adversary against the underlying problem
should almost be as efficient (both in time and space) than the adversary against the cryptographic
scheme it relies on, and should almost reach the same success probability. A scheme that comes with
such security arguments achieves practical security.

Unfortunately, practical security seems to lead to inefficient cryptographic schemes. To compensate,
idealized models have been introduced. Among them, one may cite the random oracle model, informally
introduced by Fiat and Shamir [11] and formalized by Bellare and Rogaway [3], where random functions
replace hash functions, and the ideal cipher model [2], where block ciphers are replaced by random
permutations.

Given the fact that providing security proofs in such idealized models indeed leads to efficient cryp-
tographic schemes, it is natural to wonder whether there is a gap between practical security in these
models and practical security in the real world (e.g., where a hash function is SHA-1 [22]), also known as
the standard model. The first counter example was provided by Canetti, Goldreich, and Halevi [7] who
show that there exists encryption and signature schemes which are secure in the random oracle model
but that have no secure implementation in the standard model. In other words, a real implementation
of the secure ideal schemes would result in an insecure scheme. As far as the author of these notes can
judge, the question whether the random oracle model should be preferred to the standard model with
strong security assumptions on the underlying primitives is essentially a matter of taste. Yet, it is often
stated that the constructions whose purpose is to refute the validity of the random oracle model are not
natural and that it would be very unlikely to come up with a “real” construction that would suffer from
the same pathology [18,24].

3 Structuring Convincing Security Proofs using Sequences of Games

A proof of security (just like any kind of proof) should be clear and easy to follow. If it is not elemen-
tary, being convincing about the validity of that which is to be demonstrated can be very challenging.
Structuring security proofs as a sequence of games is one possibility to provide such proofs.

The notion of security for a cryptographic scheme is usually defined via the description of a game
between an adversary and a challenger. If the adversary wins the game, the security of the scheme is
compromised. Both the adversary and the challenger are modeled as probabilistic processes, so that
the whole game is modeled as a probability space. Consequently, the fact that the game is won by
the adversary corresponds to a specific event S and the scheme is secure when Pr[S] is close to some
target probability (such as 0 or 1

2). Providing a tight bound between Pr[S] and the target probability is
fundamental to provide practical security. Usually, providing such a bound given the sole description of
the initial game is hard. One thus constructs a sequence of games Game 0, Game 1,. . . , Game n, where
Game 0 is the original game between the adversary and the challenger. Just as Game 0 defines an event

1 The advantage of such a test is the absolute value of the probability that it outputs 1 when fed with a random
bitstring minus the probability that it outputs 1 when fed with a BBS pseudorandom sequence.

2

S0 = S, each Game i defines an event Si such that Pr[Si] is negligibly close to Pr[Si−1] for i = 1, . . . , n.
Provided that Pr[Sn] is easy to compute and negligibly close to the target probability, we are done.
Note that if we only consider provable security, “negligibly close to” means “bounded by the inverse of
some polynomial in the security parameter”. When considering practical security, the final bound should
moreover be of practical interest (i.e., be meaningful for practical values of the security parameter).

Transitions between the games should be small to keep the analysis as simple as possible. Transitions
are mainly of 3 types [30]:
Transitions based on indistinguishability. Here, if the adversary is able to distinguish between the
two games, then it is easy to derive a distinguishing algorithm between two probability distributions that
were assumed to be indistinguishable (either computationally or statistically, in the case of information
theoretic security), hence a contradiction. The security proof the ElGamal encryption (see Section 7) is
the first example in this notes that uses this kind of transition.
Transitions based on failure events. In such a transition, Game i and Game i+1 proceed identically
unless some failure event F occurs, i.e.,

Si ∧ F ⇐⇒ Si+1 ∧ F.

The following fact is then (almost) inevitably used.

Lemma 1 (Difference Lemma). Let A, B, and F be three probabilistic events such that A∧F ⇔ B∧F .
Then |Pr[A]− Pr[B]| ≤ Pr[F].

Proof.

|Pr[A]− Pr[B]| = |Pr[A ∧ F] + Pr[A ∧ F]− Pr[B ∧ F]− Pr[B ∧ F]| = |Pr[A ∧ F]− Pr[B ∧ F]| ≤ Pr[F],

where the second equality comes from the fact that Pr[A ∧ F] = Pr[B ∧ F] and the third from the fact
that both Pr[A ∧ F] and Pr[B ∧ F] are real numbers between 0 and Pr[F]. ut
Thus, to show that |Pr[Si]−Pr[Si+1]| is negligible (i.e., negligibly close to 0), it is sufficient to show that
Pr[F] is negligible. The computation of the RF/RP-advantage (see Section 8) is the first example in this
notes that uses this kind of transition.
Bridging step. This is the most simple kind of steps in which the game is just formulated in a different
way, but such that Pr[Si] = Pr[Si+1]. The objective is to obtain an equivalent game, but easier to analyse.
The computation of the RF/RP-advantage (see Section 8) is the first example in this notes that uses
this kind of transition.

4 About of the Rest of this Paper

Sections 5 and 6 respectively introduce the main security scenarios for public key encryption and for
digital signatures. Next, each of the following sections describes a secure scheme and provides a proof of
its security using sequences of games. The sections are ordered by increasing level difficulty of the proofs,
the first examples being fairly simple (toy examples, yet, important results), the last two examples being
more technical (as they are based on recent research papers). All the security notions introduced in
sections 5 and 6 are illustrated by at least one example in the following sections.

5 Security of Public-Key Encryption Schemes

The aim of a public-key encryption scheme is to allow anybody who knows the public-key of Alice to send
her a message that she will be the only one able to recover, granted her private key [24]. A public-key
encryption scheme is a triplet (K, f, f−1) where

– K is a key generation algorithm, which on input 1k (where k is the security parameter) outputs a
pair (pk, sk) of matching public and private keys. The algorithm is probabilistic.

– f is an encryption algorithm that, given a message m and the public key pk outputs a ciphertext
c = fpk(m). The algorithm may be probabilistic.

– f−1 is a decryption algorithm that, given a ciphertext c and the secret key sk outputs a plaintext
m = f−1

sk (c). The algorithm is deterministic.

The decryption shall “undo” the encryption, i.e., for any message m and any valid public/private key
pair (pk, sk), it should hold that f−1

sk (fpk(m)) = m.

3

One-Wayness. This is the most basic security notion for a public-key encryption scheme which infor-
mally means that only the legitimate secret key holder should be able to decrypt. We describe this notion
more formally in Algorithm 1. In this algorithm the adversary A is a deterministic algorithm that takes
as input “random coins” r sampled uniformly from some set R.

(pk, sk)← K(1k)
r

r←− R, view← {r, pk}
m

r←−M, c← fpk(m),view← view ∪ {c}
m̂← A(view)
if m̂ = m then return 1 else return 0

Algorithm 1: One-wayness of a Public-key Encryption Scheme

Denoting S the event that Algorithm 1 returns 1, the success of an adversary A of breaking the
one-wayness (ow) of the public-key scheme S is defined by

Succow
S (A) = Pr[S]

where the probability holds over the random coins used by the encryption scheme, the internal coins r
used by the adversary, and the message m.

Semantic Security. This notion, introduced by Goldwasser and Micali in [13], guarantees that the
adversary should not be able to obtain any information about a message given its encryption, even if the
adversary knows that the plaintext was chosen among a finite set of texts (e.g., if the plaintext is just
the encryption of “yes” or “no”). This notion2 is described in Algorithm 2.

(pk, sk)← K(1k)
r

r←− R, view← {r, pk}
(m0,m1)← A(view)
b

r←− {0, 1}, c← fpk(mb),view← view ∪ {c}
b̂← A(view)
if b̂ = b then return 1 else return 0

Algorithm 2: Semantic Security of a Public-key Encryption Scheme

Denoting S the event that Algorithm 2 returns 1, the success of an adversary A of breaking the
semantic security (ss) of the public-key encryption scheme S is defined by

Succss
S (A) = |Pr[S]− 1/2|.

Adaptive Chosen Ciphertext Attacks (CCA). Semantic security is not sufficient when consid-
ering active adversaries (i.e, that don’t only eavesdrop but also injects messages). To deal with active
adversaries, Rackoff and Simon introduced the notion of adaptive chosen ciphertext attack [26]. Here,
the adversary has access to a “decryption oracle” that she/he can query to obtain the decryption of
any ciphertext. Given a “target” ciphertext (different from those that were submitted to the decryption
oracle), the adversary must not be able to extract any information about the corresponding plaintext.
The attack is adaptive in the sense that the adversary is allowed to query the decryption oracle even after
she/he obtained the target ciphertext (provided, of course, that this target ciphertext is not submitted
to the decryption oracle). This notion is described in Algorithm 3.

Denoting S the event that Algorithm 3 returns 1, the success of an adversary A of breaking the CCA
security (cca) of the public-key encryption scheme S is defined by

Succcca
S (A) = |Pr[S]− 1/2|.

In Algorithm 3 it is understood that the adversary is bounded in the number of oracle queries (i.e., the
loop in the Oracle Queries function eventually ends). In other words, when studying the security of
a particular scheme, there will be some explicit bound on this number of queries, on which the final
security bound will depend.
2 The definition we give for semantic security is actually that of a different (but equivalent) one, called ciphertext

indistinguishability, also introduced by Goldwasser and Micali in [13].

4

(pk, sk)← K(1k) /* Global Vars */

r
r←− R, view← {r, pk}

Oracle Queries(A, view,⊥)
(m0, m1)← A(view), (y?, bit)← Encryption Oracle(m0, m1), view← view ∪ {y?}
Oracle Queries(A, view, y?)
cbit← A(view)

if cbit = bit then return 1 else return 0

function Oracle Queries(A, view, y?)

loop
y ← A(view) such that y 6= y?, m← Decryption Oracle(y), view← view ∪ {m}

end

function Decryption Oracle(y)
m← f−1

sk (y), return m

function Encryption Oracle(m0, m1)

bit
r←− {0, 1}, m? ← mbit, y? ← fpk(m

?), return (y?, bit)

Algorithm 3: CCA Security of a Public-key Encryption Scheme

Other Security Notions. For an in-depth study of the security relations between different security
criteria of public-key encryption schemes, we refer to [1].

6 Security of Digital Signature Schemes

The aim of a digital signature scheme is to allow Alice to sign any document with her private key, the
correctness of this signature being verifiable by anybody using Alice’s public key. Intuitively, it should
be impossible to forge a signature, i.e., without the knowledge of Alice’s private key, it should not be
possible to sign messages on behalf of her. A digital signature scheme is a triplet (K, sig, ver) where

– K is a key generation algorithm, which on input 1k (where k is the security parameter) outputs a
pair (pk, sk) of matching public and private keys. The algorithm is probabilistic.

– sig is the signing algorithm that, given a message m and the secret key sk outputs a signature
σ = sigsk(m) of the message m. The algorithm may be probabilistic.

– ver is verification algorithm that, given a message m, a signature σ, and the public key pk, checks
whether the signature is valid (in that case verpk(m,σ) returns 1) or not (in that case verpk(m,σ)
returns 0). This algorithm is deterministic.

For any valid public/private key pair (pk, sk), any message m, and any signature σ = sigsk(m), it
should always hold that verpk(m, σ) = 1. Moreover, it should be impossible for an adversary to compute
a valid signature on Alice’s behalf, without the knowledge of her private key. Several kind of adversaries
can be considered, with different goals. In these notes we will only consider one kind of security notion,
namely existential unforgeability (euf) under chosen-message attack (cma) [14], defined by Algorithm 4.

5

(pk, sk)← K(1k) /* Global Vars */

r
r←− R, view← {r, pk}

Oracle Queries(A, view)
(m?, σ?)← A(view)
return verpk(m?, σ?) /* returns 1 if the signature is valid, 0 otherwise */

function Oracle Queries(A, view)
loop

m← A(view), σ ← Signing Oracle(m), view← view ∪ {σ}
end

function Signing Oracle(m)
σ ← sigsk(m), return σ

Algorithm 4: Existential unforgeability (euf) against chosen-message attack (cma) of a digital
signature scheme.

Denoting S the event that Algorithm 4 returns 1, the success of an adversary A of forging a valid
message/signature pair (euf) under a chosen-message attack against the digital signature scheme S is

Succeuf
S (A) = Pr[S].

In Algorithm 4 it is understood that m? should not have been queried to the signing oracle3, and that
the number of signing queries of the adversary is upper bounded. The security bound on the success of
a particular adversary will depend on this bound.

7 ElGamal Encryption

We show in this section that the ElGamal public-key encryption scheme is semantically secure under the
decisional Diffie-Hellman (DDH) assumption. In this section, G is a cyclic group of prime order q, and γ
is an arbitrary generator of G.

7.1 Preliminaries

The Decisional Diffie-Hellman (DDH) assumption. Let D be a distinguishing algorithm that
takes a triplet of elements of G as an input and outputs a bit. The DDH advantage of D is defined by

DDHAdv(D) = |Prx,y[D(γx, γy, γxy) = 1]− Prx,y,z[D(γx, γy, γz) = 1]|,
where x, y, z are random elements of Zq. The DDH assumption (for G) is the assumption that DDHAdv(D)
is negligible for any D.

The ElGamal public-key encryption scheme. The key generation algorithm computes the pub-
lic/private key pair as follows:

x
r←− Zq, α← γx, pk← α, sk← x.

Given a message m ∈ G, the encryption algorithm computes the ciphertext c as follows:

y
r←− Zq, β ← γy, δ ← αy, χ← δ ·m, c← (β, χ).

Given a ciphertext c = (β, χ) ∈ G2, the decryption algorithm recovers the plaintext m as follows:

m← χ/βx.

The decryption “undoes” the encryption as

χ/βx = (δ ·m)/(γy)x = (αy ·m)/γxy = ((γx)y ·m)/γxy = (γxy ·m)/γxy = m.

Finally, note that the security parameter corresponds to the bit-length of the group order q.
3 A stronger security notion, called non-malleability, requires that the signature was not obtained from the

signing oracle.

6

7.2 Security Proof

Game 0: This game corresponds to the definition of an adversary A against the semantic security of
the ElGamal encryption scheme.

x
r←− Zq, α = γx, pk← α, sk← x

r
r←− R, view← {r, pk}

(m0,m1)← A(view)
b

r←− {0, 1}, y
r←− Zq, β ← γy, δ ← αy, χ← δ ·mb, c← (β, χ), view← view ∪ {c}

b̂← A(view)
if b̂ = b then return 1 else return 0

Denoting S0 the event that Game 0 returns 1, we have

Succss
ElGamal(A) = |Pr[S0]− 1/2|. (2)

Game 1: [Transition based on indistinguishability.] Instead of computing δ as αy = γxy, we now compute
it as γz, where z is sampled uniformly from Zq.

x
r←− Zq, α = γx, pk← α, sk← x

r
r←− R, view← {r, pk}

(m0,m1)← A(view)

b
r←− {0, 1}, y

r←− Zq, β ← γy, z
r←− Zq, δ ← γz, χ← δ ·mb, c← (β, χ), view← view ∪ {c}

b̂← A(view)
if b̂ = b then return 1 else return 0

Denoting S1 the event that Game 0 returns 1, we claim that

|Pr[S1]− Pr[S0]| = DDHAdv(D), (3)

for some distinguishing algorithm D. To prove this claim, let us first define D as follows:

Distinguisher D(α, β, δ)
pk← α
r

r←− R, view← {r, pk}
(m0, m1)← A(view)
b

r←− {0, 1}, χ← δ ·mb, c← (β, χ), view← view ∪ {c}
b̂← A(view)
if b̂ = b then return 1 else return 0

If the input of the previous algorithm is of the form (γx, γy, γxy), then computation proceeds just as in
Game 0, so that

Pr[D(γx, γy, γxy) = 1] = Pr[S0].

If the input is of the form (γx, γy, γz), then computation proceeds just as in Game 1, so that

Pr[D(γx, γy, γz) = 1] = Pr[S1].

Based on the adversary A, we obtained the description of a distinguisher D against the DDH assumption
such that

|Pr[S1]− Pr[S0]| = DDHAdv(D).

Moreover, it is easy to see that Pr[S1] = 1/2: we first note that (in Game 1) b, r, pk, β, δ are uniformly
distributed random variables that are mutually independent, and thus, so are b, r, pk, β, χ (the argument
is identical to the one that shows that the distribution of a ciphertext produced by the one-time pad
is uniform, regardless of the plaintext distribution). Consequently b and b̂ ← A(view) are mutually
independent so that Pr[S1] = 1/2. From this, and from equations (2) and (3), we conclude that

Succss
ElGamal(A) = DDHAdv(D)

for some distinguisher D, which is negligible under the DDH assumption. This completes the proof.

7

8 Random Function vs. Random Permutation

In the ideal cipher model [2], block ciphers are replaced by random permutations. In certain circum-
stances, it is easier to study the security of a cryptographic scheme by replacing the random permutations
by random functions. The RF/RP-Lemma allows to evaluate in which cases such a switch is acceptable
by computing the advantage of an adversary trying to distinguish between a random permutation and a
random function of the same (co)domain.

8.1 Preliminaries

We denote by Γ` the set of all functions from {0, 1}` to {0, 1}` and by Π` the set of all permutations
on {0, 1}`. We consider an adversary A who is either given a black-box (oracle) access to a uniformly
distributed random function F ∈ Γ` or to a uniformly distributed random permutation P ∈ Π`. We
respectively denote this adversary AF and AP . The RF/RP-advantage of this adversary is defined by

|PrF [AF = 1]− PrP [AP = 1]|.

We will show that the advantage of an adversary that makes at most q queries to the black box is
bounded by

q2

2
· 2−`.

Without loss of generality, we assume that the adversary makes exactly q queries and that all of them
are distinct (a duplicate query would be useless as it would not provide any additional information that
the adversary would not already have).

8.2 Security Proof

Game 0: This game represents the computations made by an adversary A having a black-box (oracle)
access to a random permutation P ∈ Π`.

P
r←− Π` /* Global Var */

r
r←− R, view← {r}

for i = 1, . . . , q do
xi ← A(view), yi ← Oracle(xi), view← view ∪ {yi}

end
bit← A(view), return bit

function Oracle(x)
y ← P (x)
return y

Denoting S0 the event that the previous algorithm returns 1, we have

PrP [AP = 1] = Pr[S0]. (4)

Game 1: [Bridging Step.] We now introduce a technique that will be overused in the rest of these notes.
We replace the random permutation by a table that grows while the adversary makes queries to the
oracle. The table, initially empty, keeps track of the input/output values of the simulated permutation.
Given an input value x on which the oracle has not been queried yet, a random value is chosen for y, the
pair (x, y) is inserted in the table, and y is returned. If the input value x matches some entry in the table,
the corresponding y is returned. This would perfectly simulate a random function. As we are dealing with
a random permutation, we should also make sure that two distinct queries receive two distinct answers.
This is described more formally in Game 1 (recall that we assumed that the adversary never makes the
same query twice, so that we do not actually need to keep track of x in the list here). This technique is
sometimes called “lazy sampling”.

8

List← ∅ /* Global Var */

r
r←− R, view← {r}

for i = 1, . . . , q do
xi ← A(view), yi ← Oracle(xi), view← view ∪ {yi}

end
bit← A(view), return bit

function Oracle(x)

Y
r←− {0, 1}`

if Y ∈ List then y
r←− {0, 1}`\List else y ← Y

List← List ∪ {y}
return y

It should be clear that this change is purely conceptual and doesn’t change anything from the point
of view of the adversary. Consequently, if we denote by S1 the event the Game 1 returns 1,

Pr[S1] = Pr[S0]. (5)

Game 2: [Transition based on a failure event.] We now drop the consistency check in the simulation of
the random permutation, so that it actually becomes a simulation of a random function, i.e., letting S2

be the event that Game 2 returns 1,

Pr[S2] = PrF [AF = 1], (6)

where F ∈ Γ` is a random function.

List← ∅ /* Global Var */
r

r←− R, view← {r}
for i = 1, . . . , q do

xi ← A(view), yi ← Oracle(xi), view← view ∪ {yi}
end
bit← A(view), return bit

function Oracle(x)

Y
r←− {0, 1}`

y ← Y

List← List ∪ {y}
return y

Let F be the event that Y ∈ List at least once during the execution of Game 1. It is obvious that
Game 1 and Game 2 proceed identically unless the event F occurs. By the difference lemma,

|Pr[S2]− Pr[S1]| ≤ Pr[F]. (7)

We denote Yi the value sampled by Oracle to answer the ith query in Game 1. Let {y1, y2, . . . , yq} be
a list of q distinct elements of {0, 1}` at let Y ∈ {0, 1}` be a uniformly distributed random variable. We
have that

Pr[F] = Pr[Y2 ∈ {Y1} ∨ Y3 ∈ {Y1, Y2} ∨ · · · ∨ Yq ∈ {Y1, . . . , Yq−1}]
≤ Pr[Y2 ∈ {Y1}] + Pr[Y3 ∈ {Y1, Y2}] + · · ·+ Pr[Yq ∈ {Y1, . . . , Yq−1}]
≤ PrY [Y ∈ {y1}] + PrY [Y ∈ {y1, y2}] + · · ·+ PrY [Y ∈ {y1, y2, . . . , yq−1}]

=
1
2`

+
2
2`

+ · · ·+ q − 1
2`

=
q(q − 1)

2
· 2−` ≤ q2

2
· 2−`.

The first inequality comes from the union bound, the second from the fact that Pr[Yi ∈ {Y1, . . . , Yi−1}] ≤
Pr[Yi ∈ {y1, . . . , yi−1}] as the y1, . . . , yi−1 are distinct values (which might not be the case for the Yi’s).
From this bound and from equations (4), (5), (6), and (7) we deduce the announced result.

9

9 The Luby-Rackoff Construction

When studying the security of the Data Encryption Standard (DES) [21], Luby and Rackoff proved that
a 3 rounds Feistel network (on which the DES is based) can generate a pseudo-random permutation out
of three mutually independent random functions.

9.1 Preliminaries

A family P = {Pk}k∈K ⊂ Π` is said to be pseudo-random if it is hard to distinguish between a random
instance of that family and a random instance of Π`. More formally, let A be an adversary who is
given an oracle access to a random permutation Pk of P or to a random permutation P ∗ of Π`. The
PRP-advantage of A is defined by

|Pr[APk = 1]− Pr[AP∗ = 1]|.

The family P is said to be pseudo-random if any adversary’s PRP-advantage is negligible.
A Feistel scheme allows to build a permutation from a round functions. A three round Feistel scheme

based on the functions f1, f2, f3 ∈ Γ` is a permutation in Π2`, usually denoted Ψ(f1, f2, f3), and defined
as follows: On input (u, v) ∈ {0, 1}` × {0, 1}`, let

w ← u⊕ f1(v)
x← v ⊕ f2(w)
y ← w ⊕ f3(x),

the output is (x, y) ∈ {0, 1}`×{0, 1}`. It is easy to see that Ψ(f1, f2, f3) is permutation by checking that
Ψ−1(f1, f2, f3) = Ψ(f3, f2, f1). The Luby-Rackoff construction consists in a three round Feistel scheme
with 3 mutually independent random functions. In the next section, we show that the family LR =
{Ψ(F, G, H) : F, G,H ∈ Γ`} ⊂ Π2` is pseudo-random, provided that 2−` is negligible. More precisely, we
show that the PRP-advantage of any adversary A who is given access to a random permutation P ∈ LR
or to a random permutation P ∗ ∈ Π` is bounded by 3

2 · q2 · 2−`.

9.2 Security Proof

Game 0: This game represents the computation of an adversary A who is given an oracle access to
a random Luby-Rackoff instance. As in Section 8.1, we assume that the adversary makes exactly q
encryption queries, and that all the queries are distinct from each other. In the following game, this
translates in (ui, vi) 6= (uj , vj) for i 6= j.

F, G, H
r←− Γ` /* Global Var */

r
r←− R, view← {r}

for i = 1, . . . , q do
(ui, vi)← A(view), (xi, yi)← Oracle(ui, vi), view← view ∪ {(xi, yi)}

end
bit← A(view), return bit

function Oracle(u, v)
w ← u⊕ F (v)
x← v ⊕G(w)
y ← w ⊕H(x)
return (x, y)

Denoting S0 the event that Game 0 returns 1, we have

Pr[S0] = Pr[AP = 1], (8)

where P is a random instance of Luby-Rackoff construction.

10

Game 1: [Bridging Step.] In this game, we adopt the lazy-sampling technique for both random functions
G and H (similarly to what we did in Game 1 in Section 8.2, except that we deal with a simple case
here, as we consider random functions).

GList, HList← ∅, F
r←− Γ` /* Global Var */

r
r←− R, view← {r}

for i = 1, . . . , q do
(ui, vi)← A(view), (xi, yi)← Oracle(ui, vi), view← view ∪ {(xi, yi)}

end
bit← A(view), return bit

function Oracle(u, v)
w ← u⊕ F (v)

if (w, g) ∈ GList then x← v ⊕ g else g
r←− {0, 1}`, GList← GList ∪ {(w, g)}, x← v ⊕ g

if (x, h) ∈ HList then y ← w ⊕ h else h
r←− {0, 1}`, HList← HList ∪ {(x, h)}, y ← w ⊕ h

return (x, y)

To save us some space in the algorithm, we do not explicitly write that searching for (w, g) ∈ GList
or for (x, h) ∈ HList is respectively done “for some g” and “for some h”. Denoting S1 the event that
Game 0 returns 1, we have

Pr[S1] = Pr[S0]. (9)

Game 2: [Transition based on a failure event.] We eliminate the consistency checks in the encryption
oracle. As we do not need GList nor HList in this case, we remove them from the game description to
simplify it a little bit.

F
r←− Γ` /* Global Var */

r
r←− R, view← {r}

for i = 1, . . . , q do
(ui, vi)← A(view), (xi, yi)← Oracle(ui, vi), view← view ∪ {(xi, yi)}

end
bit← A(view), return bit

function Oracle(u, v)
w ← u⊕ F (v)

g
r←− {0, 1}`, x← v ⊕ g

h
r←− {0, 1}`, y ← w ⊕ h

return (x, y)

In this new game, the oracle simply outputs a fresh random value of {0, 1}2` for each query. As we
assumed that the q queries of the adversary are distinct from each other, this means that the oracle
behaves like a random function of Γ`. Denoting S2 the event that Game 2 outputs 1, we thus have

Pr[S2] = Pr[AF∗ = 1], (10)

where F ∗ ∈ Γ` is a random function.
We denote by (u1, v1), . . . , (uq, vq) the q queries made to the oracle, and similarly denote wi, gi, hi, xi, yi

the values corresponding to the query (ui, vi). Let F1 be the event that wi = wj for some i 6= j in Game 2.
Let F2 be the event that xi = xj for some i 6= j in Game 2. It is simple to see that Game 2 proceed
identically to Game 1, unless the event F1 ∨ F2 occurs. By the difference lemma and the union bound,
we have

|Pr[S2]− Pr[S1]| ≤ Pr[F1 ∨ F2] ≤ Pr[F1] + Pr[F2] ≤
∑

i<j

(Pr[wi = wj] + Pr[xi = xj]). (11)

11

For any i 6= j we have Pr[wi = wj] = Pr[ui ⊕ F (vi) = uj ⊕ F (vj)]. As we assumed that the adversary
does not ask the same query twice,

– either ui 6= uj and vi = vj , in such a case we have Pr[ui ⊕ F (vi) = uj ⊕ F (vj)] = 0,
– or vi 6= vj , and we have Pr[ui ⊕ F (vi) = uj ⊕ F (vj)] = 2−`.

Thus Pr[wi = wj] ≤ 2−`. For any i 6= j, we moreover have Pr[xi = xj] = Pr[vi ⊕ gi = vj ⊕ gj] = 2−`, as
gi, gj are mutually independent random variables. With this and from (11) we obtain that

|Pr[S2]− Pr[S1]| ≤ q2 · 2−`. (12)

From equations (8), (9), (10), (11), and (12), we deduce that

|Pr[AP = 1]− Pr[AF∗ = 1]| ≤ q2 · 2−`.

Finalizing the proof using the RF/RP-Lemma: To conclude, we make use of the result of Section 8.
The advantage of A of distinguishing P from P ∗ is

|Pr[AP = 1]−Pr[AP∗ = 1]| ≤ |Pr[AP = 1]−Pr[AF∗ = 1]|+ |Pr[AF∗ = 1]−Pr[AP∗ = 1]| ≤ 3
2
· q2 · 2−`.

This completes the proof.

10 Full-Domain Hash

The Full-Domain Hash (FDH) [3] is a provably secure signature scheme in the random oracle model.
The first security proof was initially proposed by Bellare and Rogaway in [5] and was later improved by
Coron in [9] (see Section 11 for Coron’s proof).

10.1 Preliminaries

The Full Domain Hash (FDH) signature scheme is defined as follows. On input 1k (where k is the security
parameter), the key generation algorithm computes RSA parameters n = p · q, e, d where p, q are k/2-bit
primes and where e · d ≡ 1 (mod ϕ(n)). It outputs (pk, sk) where pk = (n, e) and sk = (n, d). Both the
signing and the verifying algorithm have oracle access to a hash function H : {0, 1}∗ → Z∗n. On input m,
the signing algorithm outputs the signature σ = H(m)d mod n. On input (m, σ), the verifying algorithm
outputs 1 if σe mod n = H(m) and 0 otherwise.

Theorem 2. Let A be an adversary performing a chosen-message attack against the Full Domain Hash
in the random oracle model, with security parameter k. Let qs and qh denote the number of queries made
by A to the signing oracle and to the hash oracle respectively. Let Succeuf

fdh(A) be the success probability of A
to produce an existential forgery in time t. Then there exists an adversary A′ that breaks the one-wayness
of RSA with probability of success Succow

rsa(A′) in time t′ where

Succow
rsa(A′) =

1
qh
· Succeuf

fdh(A) and t′ = t + qh · O(k3).

A proof of this result is provided in Section 10.3.

10.2 Discussion

As noted by authors themselves, the bound is not satisfactory. Indeed, whereas it is easy in practice
to limit the number of signing query, it is not possible to limit the number of hash queries. We should
assume that qh À qs. If the adversary is allowed to ask, say, qh = 260 hash queries (in practice, this
corresponds to hash 260 times with SHA-1 [22] or MD5 [27]), and if the success probability of inverting
RSA is 2−61, Theorem 2 says that the forging probability is 1/2, which is too much. If we only had this
security result available, we would have to increase the size of the security parameter k to lower the

12

probability of inverting RSA. The drawback of this solution is that it would decrease the efficiency of
the scheme.

At first sight, it might be surprising that the bound given in Theorem 2 does not depend on qs. In
fact, the original bound proposed in [5] does, as it shows how to construct an adversary A′ such that

Succow
rsa(A′) =

1
qh + qs + 1

· Succeuf
fdh(A) and t′ = t + (qh + qs + 1) · O(k3).

Therefore, our bound slightly improves on that of the original proof, but the gain is negligible. For
reasons mentioned in the previous paragraph, we should consider that qh À qs so that both bounds are
equivalent. Coron’s proof [9] is a real improvement in the sense that it replaces the factor qh by qs in the
bound on the success probability of A′ (see Section 11 for a full treatment of Coron’s proof).

10.3 Proof of Theorem 2

Throughout this proof, we denote by Si the probability that Game i returns 1.

Game 0: This game exactly corresponds to the existential unforgeability (euf) game under chosen-
message attack performed by an adversary A. In the game, we denote by H the set of all functions from
{0, 1}∗ to Z∗n. We have

Succeuf
fdh(A) = Pr[S0]. (13)

Note that as the hash oracle is queried qh + qs + 1 times in total (qh times by the adversary, qs by the
signing oracle, and one last time at the end of the game).

(n, e, d)← RSA(1k), H
r←− H, i, j ← 0 /* Global Vars */

r
r←− R, view← {r, n, e}

Oracle Queries(A, view)
(m?, σ?)← A(view)
h← H(m?)
if σ? = hd mod n then return 1 else return 0

function Oracle Queries(A, view)
loop

mi+j ← A(view)
do either

if i < qh then hi+j ← Hash Oracle(mi+j), view← view ∪ {hi+j}, i← i + 1
or

if j < qs then σi+j ← Signing Oracle(mi+j), view← view ∪ {σi+j}, j ← j + 1
done

end

function Hash Oracle(m)
h← H(m), return h

function Signing Oracle(m)
h← Hash Oracle(m), σ ← hd mod n
return σ

Game 1: [Bridging Step.] In this game, we adopt the lazy-sampling technique for the random function
H. Note that searching for (∗,m, ∗, h) ∈ HList is done “for some h”. We have

Pr[S1] = Pr[S0]. (14)

13

(n, e, d)← RSA(1k), HList← ∅, i, j ← 0 /* Global Vars */

r
r←− R, view← {r, n, e}

Oracle Queries(A, view)
(m?, σ?)← A(view)

if (∗,m?, ∗, h?) ∈ HList then h← h? else h
r←− Z∗n

if σ? = hd mod n then return 1 else return 0

function Oracle Queries(A, view)
loop

mi+j ← A(view)
do either

if i < qh then hi+j ← Hash Oracle(mi+j), view← view ∪ {hi+j}, i← i + 1
or

if j < qs then σi+j ← Signing Oracle(mi+j), view← view ∪ {σi+j}, j ← j + 1
done

end

function Hash Oracle(m)

if (∗, m, ∗, h) ∈ HList then return h

else h
r←− Z∗n, HList← HList ∪ {(i + j, m,⊥, h)}, return h

function Signing Oracle(m)
h← Hash Oracle(m), σ ← hd mod n
return σ

Game 2: [Bridging Step.]

(n, e, d)← RSA(1k), HList← ∅, i, j ← 0 /* Global Vars */

r
r←− R, view← {r, n, e}

Oracle Queries(A, view)
(m?, σ?)← A(view)
if (∗,m?, ∗, h?) ∈ HList then h← h? else h

r←− Z∗n
if σ? = hd mod n then return 1 else return 0

function Oracle Queries(A, view)

for i = 1, . . . , qh do
mi ← A(view)
hi ← Hash Oracle(mi), view← view ∪ {hi}
if j < qs then possibly do σi ← Signing Oracle(mi), view← view ∪ {σi}, j ← j + 1

end

function Hash Oracle(m)
if (∗,m, ∗, h) ∈ HList then return h

else h
r←− Z∗n, HList← HList ∪ {(i ,m,⊥, h)}, return h

function Signing Oracle(m)
h← Hash Oracle(m), σ ← hd mod n
return σ

This game comes from two observations. This first is that we can assume without loss of generality
that the adversary does not ask twice the same query to the signing oracle (as she/he would necessarily
obtain the same answer twice). We can thus assume that the signing queries are distinct from each other.

14

The second observation is that if the adversary performs a signing query at a point m that she/he never
queries to the hash oracle during the game, then the signature σ ∈ Z∗n is a uniformly distributed random
variable independent from the rest of the game at any time, and in particular from the rest of view (as
it is the encryption of a random bitstring that is never included in view). We can thus assume that the
adversary never queries the signing oracle at point she/he has not submitted to the hash oracle yet. Note
that this implies that qh ≥ qs. We have

Pr[S2] = Pr[S1]. (15)

Game 3: Using a similar argument than in the previous game, if m? does not match any entry in the
list (i.e., if the adversary did not query the hash oracle at the point m?), then the success probability
of the adversary is necessarily negligible since the guess σ? is compared to a random value independent
from the value of view at the end of the game. We can assume that there exists some index 1 ≤ c < qh+
such that m? = mc. In Game 3 we try to guess the value of c (we denote the guess ĉ). If the guess
is correct, Game 3 proceeds just as Game 2. If it is not, the game is aborted. As both games proceed
identically unless ĉ 6= c in Game 3, we have

Pr[S3] = Pr[S2 ∧ ĉ = c] = Pr[S2] Pr[ĉ = c] =
1
qh

Pr[S2], (16)

where the second equality comes from the fact that the events S2 and ĉ = c are independent (they
concern two distinct games), and where the last equality comes from the fact that ĉ is sampled uniformly
at random.

(n, e, d)← RSA(1k), HList← ∅, i, j ← 0 /* Global Vars */

r
r←− R, view← {r, n, e}

ĉ
r←− {1, 2, . . . , qh} /* Global Var */

Oracle Queries(A, view)
(m?, σ?)← A(view)

Search for (c,m?, ∗, h?) ∈ HList for some c and h? /* We assumed that this entry exists */
if ĉ 6= c then abort else h← h?

if σ? = hd mod n then return 1 else return 0

function Oracle Queries(A, view)
for i = 1, . . . , qh do

mi ← A(view)
hi ← Hash Oracle(mi), view← view ∪ {hi}
if j < qs then possibly do σi ← Signing Oracle(mi), view← view ∪ {σi}, j ← j + 1

end

function Hash Oracle(m)
if (∗,m, ∗, h) ∈ HList then return h

else h
r←− Z∗n, HList← HList ∪ {(i,m,⊥, h)}, return h

function Signing Oracle(m)
h← Hash Oracle(m), σ ← hd mod n
return σ

Game 4: In this game we incorporate the challenge ciphertext (of the ow game) as follows: at the cth
query to the hash oracle, we set the hash value to y, without querying the hash oracle.

15

(n, e, d)← RSA(1k), HList← ∅, i, j ← 0 /* Global Vars */

r
r←− R, view← {r, n, e}

ĉ
r←− {1, 2, . . . , qh}, y

r←− Z∗n /* Global Vars */

Oracle Queries(A, view)
(m?, σ?)← A(view)
Search for (c,m?, ∗, h?) ∈ HList for some c and h? /* We assumed that this entry exists */
if ĉ 6= c then abort else h← h?

if σ? = hd mod n then return 1 else return 0

function Oracle Queries(A, view)
for i = 1, . . . , qh do

mi ← A(view)
if i = ĉ then HList← HList ∪ {(i,mi,⊥, y)}, view← view ∪ {y}
else hi ← Hash Oracle(mi) view← view ∪ {hi}

if j < qs then possibly do σi ← Signing Oracle(mi), view← view ∪ {σi}, j ← j + 1
end

function Hash Oracle(m)
if (∗,m, ∗, h) ∈ HList then return h

else h
r←− Z∗n, HList← HList ∪ {(i,m,⊥, h)}, return h

function Signing Oracle(m)
h← Hash Oracle(m), σ ← hd mod n
return σ

Since we assumed that the adversary never asks the same hash query twice, this game performs just
as the previous one from the point of view of the adversary (i.e., the respective distributions of view are
identical). Consequently,

Pr[S4] = Pr[S3]. (17)

Game 5: In this game, instead of generating a random value for each hash query, we generate random
signatures that we encrypt (using the public key) to get equivalent random hash values. Also note that
we keep track of the plaintexts in the list. As the encryption is bijective, this makes no difference from
the point of view of the adversary, and thus

Pr[S5] = Pr[S4]. (18)

16

(n, e, d)← RSA(1k), HList← ∅, i, j ← 0 /* Global Vars */

r
r←− R, view← {r, n, e}

ĉ
r←− {1, 2, . . . , qh}, y

r←− Z∗n /* Global Vars */
Oracle Queries(A, view)
(m?, σ?)← A(view)
Search for (c,m?, ∗, h?) ∈ HList for some c and h? /* We assumed that this entry exists */
if ĉ 6= c then abort else h← h?

if σ? = hd mod n then return 1 else return 0

function Oracle Queries(A, view)
for i = 1, . . . , qh do

mi ← A(view)
if i = ĉ then HList← HList ∪ {(i,mi,⊥, y)}, view← view ∪ {y}
else hi ← Hash Oracle(mi) view← view ∪ {hi}
if j < qs then possibly do σi ← Signing Oracle(mi), view← view ∪ {σi}, j ← j + 1

end

function Hash Oracle(m)
if (∗,m, ∗, h) ∈ HList then return h

else x
r←− Z∗n, h← xe mod n, HList← HList ∪ {(i,m, x, h)}, return h

function Signing Oracle(m)
h← Hash Oracle(m), σ ← hd mod n
return σ

Game 6: Since the preimage of each hash query (except the cth one) is known, we can simulate the
signing oracle without the need for the secret key. From the point of view of the adversary, this game is
identical to the previous one:

Pr[S6] = Pr[S5]. (19)

In Game 6, one can note that a valid forgery actually corresponds to a preimage of y. Moreover, the
simulation of this game does not require to have access to the signing (decryption) oracle as it can be
simulated. Indeed, the secret key is never used during the game (except for the final verification step of
course). This game thus provides a description of a valid adversary A′ that tries to break the one-wayness
(ow) of the public key scheme. This adversary needs to perform qh RSA encryptions (with the public
key). Consequently,

Pr[S6] = Succow
rsa(A′), (20)

where A′ performs in time t′ = t + qh · O(k3). From equations (13), (14), (15), (16), (17), (18), (19), and
(20) we obtain

Succow
rsa(A′) =

1
qh
· Succeuf

fdh(A).

17

(n, e, d)← RSA(1k), HList← ∅, i, j ← 0 /* Global Vars */

r
r←− R, view← {r, n, e}

ĉ
r←− {1, 2, . . . , qh}, y

r←− Z∗n /* Global Vars */
Oracle Queries(A, view)
(m?, σ?)← A(view)
Search for (c,m?, ∗, h?) ∈ HList for some c and h? /* We assumed that this entry exists */
if ĉ 6= c then abort else h← h?

if σ? = hd mod n then return 1 else return 0

function Oracle Queries(A, view)
for i = 1, . . . , qh do

mi ← A(view)
if i = ĉ then HList← HList ∪ {(i,mi,⊥, y)}, view← view ∪ {y}
else hi ← Hash Oracle(mi) view← view ∪ {hi}
if j < qs then possibly do σi ← Signing Oracle(mi), view← view ∪ {σi}, j ← j + 1

end

function Hash Oracle(m)
if (∗,m, ∗, h) ∈ HList then return h

else x
r←− Z∗n, h← xe mod n, HList← HList ∪ {(i, m, x, h)}, return h

function Signing Oracle(m)

h← Hash Oracle(m), Search for (∗, ∗, x, h) ∈ HList, σ ← x
return σ

11 A Better Security Bound for the Full-Domain Hash

11.1 Preliminaries

In Section 10 we described the FDH signature scheme and proved its security. For reasons detailed in
Section 10.2 the bound was not satisfactory. In this section we introduce a new bound, proposed by
Coron in [9].

Theorem 3. Let A be an adversary performing a chosen-message attack against the Full Domain Hash
in the random oracle model, with security parameter k. Let qs and qh denote the number of queries made
by A to the signing oracle and to the hash oracle respectively. Let Succeuf

fdh(A) be the success probability of A
to produce an existential forgery in time t. Then there exists an adversary A′ that breaks the one-wayness
of RSA with probability of success Succow

rsa(A′) in time t′ where

Succow
rsa(A′) =

1
qs · e · Succeuf

fdh(A) and t′ = t + qh · O(k3).

11.2 Proof of Theorem 3

Games 0,1, and 2 are almost the same in this proof than in the one of Theorem 2. The only difference is
that the list HList contains elements that are different from those that were stored in the previous proof.
The two first elements will naturally correspond to a message and to its image by H. The next to will
be clarified in Game 3. These last two values are always set to ⊥ in games 0,1, and 2.

Game 3: In the previous proof, the challenge ciphertext y was introduced only once, at a specific index.
Here, for each query, we introduce it with probability p (that we will precised later). With probability
1− p we introduce a value with a known preimage. In both cases, the value returned by Hash Oracle is
a uniformly distributed random value of Z?

n, just as in Game 2. Consequently,

Pr[S3] = Pr[S2]. (21)

18

(n, e, d)← RSA(1k), HList← ∅, i, j ← 0, y
r←− Z?

n /* Global Vars */

r
r←− R, view← {r, n, e}

Oracle Queries(A, view)
(m?, σ?)← A(view)
if (m?, h?, ∗, ∗) ∈ HList then h← h? else h

r←− Z∗n
if σ? = hd mod n then return 1 else return 0

function Oracle Queries(A, view)
for i = 1, . . . , qh do

mi ← A(view)
hi ← Hash Oracle(mi), view← view ∪ {hi}
if j < qs then possibly do σi ← Signing Oracle(mi), view← view ∪ {σi}, j ← j + 1

end

function Hash Oracle(m)
if (m,h, ∗, ∗) ∈ HList then return h
else

s
r←− Z?

n, With probability p, h← y · se and t← 1, otherwise h← se and t← 0
HList← HList ∪ {(m, h, s, t)},

end

function Signing Oracle(m)
h← Hash Oracle(m), σ ← hd mod n
return σ

Game 4: We first note that if m? cannot be found in HList, then the advantage of the adversary is
necessarily negligible as her/his guess σ? is compared to a fresh random value. Consequently, we assume
in this game that m? can always be found in the list. This will simplify the analysis of Game 5. Now the
tricky part.

For a proportion 1− p of the signing queries, it is now possible to simulate the signing oracle without
the knowledge of the secret key. Games 3 and 4 are identical unless Game 4 abort (an event that we
denote F), i.e., unless t = 1 for one of the qs signing oracle queries. As t = 1 with probability p we have

Pr[S4] = Pr[F ∧ S3] = Pr[F] Pr[S3] = (1− p)qs · Pr[S3]. (22)

19

(n, e, d)← RSA(1k), HList← ∅, i, j ← 0, y
r←− Z?

n /* Global Vars */

r
r←− R, view← {r, n, e}

Oracle Queries(A, view)
(m?, σ?)← A(view)
Search for (m?, h?, ∗, ∗) ∈ HList and set h← h?

if σ? = hd mod n then return 1 else return 0

function Oracle Queries(A, view)
for i = 1, . . . , qh do

mi ← A(view)
hi ← Hash Oracle(mi), view← view ∪ {hi}
if j < qs then possibly do σi ← Signing Oracle(mi), view← view ∪ {σi}, j ← j + 1

end

function Hash Oracle(m)
if (m,h, ∗, ∗) ∈ HList then return h
else

s
r←− Z?

n, With probability p, h← y · se and t← 1, otherwise h← se and t← 0
HList← HList ∪ {(m,h, s, t)},

end

function Signing Oracle(m)

Search for (m,h, s, t) ∈ HList for some h, s, t. if t = 1 then abort else σ ← s
return σ

Game 5: We add a last modification at the end of the game. If the last lookup returns a tuple such
that t = 0 we abort the game (an event that we denote F ′). As t = 0 with probability 1− p,

Pr[S5] = Pr[F ′ ∧ S4] = Pr[F ′] · Pr[S4] = p · Pr[S4]. (23)

In this last game, the simulation can be performed without the knowledge of the secret key (except for
the last verification step of course). Note also that when Game 5 outputs one, it is easy to find the
preimage x of y as in that case we have σ? = hd and h = y · se, so that x = yd = hd/se·d = σ?/s. This
game thus provides a description of a valid adversary A′ that breaks the one-wayness (ow) of the public
key scheme by use of A so that we can denote

Pr[S5] = Succow
rsa(A′). (24)

This adversary performs qh encryptions (using the public key) and thus, it performs in time t′ = t + qh ·
O(k3). From equations (13), (14), (15), (21), (22), (23), and (24), we obtain

Succow
rsa(A′) = p(1− p)qs · Succeuf

fdh(A).

To best success probability of adversary A′ is obtained by choosing p = 1
1+qs

, in which case we obtain

Succow
rsa(A′) =

1
1 + qs

(
1− 1

1 + qs

)qs

· Succeuf
fdh(A).

When qs is large, this can be approximated by

Succow
rsa(A′) =

1
qs · e · Succeuf

fdh(A),

where e = exp(1).

20

(n, e, d)← RSA(1k), HList← ∅, i, j ← 0, y
r←− Z?

n /* Global Vars */

r
r←− R, view← {r, n, e}

Oracle Queries(A, view)
(m?, σ?)← A(view)

Search for (m?, h?, s, t) ∈ HList, if t = 0 then abort else h← h?

if σ? = hd mod n then return 1 else return 0

function Oracle Queries(A, view)
for i = 1, . . . , qh do

mi ← A(view)
hi ← Hash Oracle(mi), view← view ∪ {hi}
if j < qs then possibly do σi ← Signing Oracle(mi), view← view ∪ {σi}, j ← j + 1

end

function Hash Oracle(m)
if (m,h, ∗, ∗) ∈ HList then return h
else

s
r←− Z?

n, With probability p, h← y · se and t← 1, otherwise h← se and t← 0
HList← HList ∪ {(m,h, s, t)},

end

function Signing Oracle(m)
Search for (m,h, s, t) ∈ HList for some s, h, t. if t = 1 then abort else σ ← s
return σ

12 OAEP+

OAEP is a public-key encryption scheme introduced by Bellare and Rogaway in [4]. Although very
efficient, this scheme suffers from the fact that it is not provably secure against adaptive chosen ciphertext
attacks. Shoup shows in [28, 29] that no proof is attainable for the general OAEP scheme by only
assuming the one-wayness of the underlying trapdoor permutation, even in the random oracle model.
Yet, he proves that when the underlying trapdoor permutation is RSA with a public exponent equal to
3, then the construction is secure (a result that is extended in [12] to any public exponent). To obtain
a provably secure scheme under the one-wayness assumption of the underlying trapdoor permutation,
Shoup introduces the OAEP+ public-key encryption scheme.

12.1 Preliminaries

OAEP+ is based on a one-way trapdoor permutation fpk : {0, 1}k → {0, 1}k, its inverse being f−1
sk . Let

k0 and k1 be two parameters that satisfy k0 + k1 < k and such that 2−k0 and 2−k1 are negligible. The
scheme encrypts messages x ∈ {0, 1}n where n = k− k0 − k1. It makes use of three hash functions (that
will be modeled in the proofs as random oracles):

G : {0, 1}k0 −→ {0, 1}n,
H ′ : {0, 1}n+k0 −→ {0, 1}k1 ,
H : {0, 1}n+k1 −→ {0, 1}k0 .

Key Generation: On input the security parameter, the key generation algorithm produces a pub-
lic/private key pair (pk, sk), defining the public permutation fpk and its inverse f−1

sk .

21

Encryption: Given a plaintext x ∈ {0, 1}n, the encryption algorithm chooses r
r←− {0, 1}k0 and com-

putes

s ← (G(r)⊕ x)‖H ′(r‖x), (s ∈ {0, 1}n+k1),

t ← H(s)⊕ r, (t ∈ {0, 1}k0),

w ← s‖t, (w ∈ {0, 1}k),

y ← fpk(w) (y{0, 1}k).

The ciphertext is y.

Decryption: On input y ∈ {0, 1}k, the decryption algorithm performs the following computations:

w ← f−1
sk (y) (w ∈ {0, 1}k),

s‖t← w (s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0),
r ← H(s)⊕ t (r ∈ {0, 1}k0),
x ← G(r)⊕ s[0 · · ·n− 1] (x ∈ {0, 1}n),
c ← s[n · · ·n + k1 − 1] (c ∈ {0, 1}k1).

If c = H ′(r‖x), the algorithm outputs the cleartext x; otherwise, the algorithm rejects the ciphertext
and does not output a cleartext.

Theorem 4. If the underlying trapdoor permutation f is one-way (ow), then OAEP+ is secure against
adaptive chosen ciphertext attack in the random oracle model.

12.2 Proof of Theorem 4

Throughout this proof the event Si always denotes the probability that Game i returns 1. Moreover
we note that, during the decryption process, H ′ is always queried at points of the form r‖x where
x = G(r)⊕ s[0 · · ·n−1]. Consequently, an efficient adversary would not query H ′ at a point r‖x without
at least querying G(r) first (otherwise, the probability that the H ′ query makes any sense would be
negligible). In the proof, we thus assume that whenever a query of the form H ′(r‖x) is made by the
adversary A, then A has previously made the query G(r).

Game 0: This is the original attack game against the encryption scheme. It is represented on page 23.
In this game we let G = {g : {0, 1}k0 → {0, 1}n}, H′ = {h : {0, 1}n+k0 → {0, 1}k1}, and H = {h :
{0, 1}n+k1 → {0, 1}k0}. We have

Succcca
oaep+(A) = |Pr[S0]− 1/2|. (25)

Game 0’ : We adopt the (by now) well known lazy-sampling technique. Obviously,

Pr[S0′] = Pr[S0]. (26)

22

(pk, sk)
r←− K(1k), G

r←− G, H ′ r←− H′ H
r←− H, i, j, k, `← 0 /* Global Vars */

r
r←− R, view← {r, pk}

Oracle Queries(A, view,⊥)
(x0, x1)← A(view), (y?, bit)← Encryption Oracle(x0, x1), view← view ∪ {y?}
Oracle Queries(A, view, y?)
cbit← A(view)

if cbit = bit then return 1 else return 0

function Oracle Queries(A, view, y?)

loop
do either

/* Hash Oracle query to G */

if i < qg then r ← A(view), g ← G(r), view← view ∪ {g}, i← i + 1
or

/* Hash Oracle query to H’ */

if j < qh′ then r, x← A(view), h′ ← H’(r‖x), view← view ∪ {h′}, j ← j + 1
or

/* Hash Oracle query to H */

if k < qh then s← A(view), h← H(s), view← view ∪ {h}, k ← k + 1
or

/* Decryption Oracle query */

if ` < qd then
y ← A(view) such that y 6= y?

x← Decryption Oracle(y), view← view ∪ {x}, `← ` + 1
done

end

function G(r)
g ← G(r), return g

function H’(r‖x)
h′ ← H ′(r‖x), return h′

function H(s)
h← H(s), return h

function Decryption Oracle(y)
w ← f−1

sk (y), s‖t← w, r ← H(s)⊕ t, x← G(r)⊕ s[0 · · ·n− 1], c← s[n · · ·n + k1 − 1]
if c = H’(r‖x) then return x else return reject

function Encryption Oracle(x1, x2)

bit
r←− {0, 1}, x? ← xbit

r? r←− {0, 1}k0

s? ← (G(r?)⊕ x?)‖H’(r?‖x?), t? ← H(s?)⊕ r?, w? ← s?‖t?, y? ← fpk(w
?)

return (y?, bit)

23

(pk, sk) r←− K(1k), Glist← ∅, H’list← ∅, Hlist← ∅, i, j, k, `← 0 /* Global Vars */

r
r←− R, view← {r, pk}

Oracle Queries(A, view,⊥)
(x0, x1)← A(view), (y?, bit)← Encryption Oracle(x0, x1), view← view ∪ {y?}
Oracle Queries(A, view, y?)

b̂it← A(view)
if b̂it = bit then return 1 else return 0

function G(r)

if (r, g) ∈ Glist then return g else g
r←− {0, 1}n, Glist← Glist ∪ {(r, g)}, return g

function H’(r‖x)
if (r, x, h′) ∈ H’list then return h′ else h′ r←− {0, 1}k1 , H’list← H’list ∪ {(r, x, h′)}, return h′

function H(s)

if (s, h) ∈ Hlist then return h else h
r←− {0, 1}k0 , Hlist← Hlist ∪ {(s, h)}, return h′

Game 1: We modify the decryption oracle so that it never queries G nor H ′ at points that were not
previously queried by the adversary.

function Decryption Oracle(y)
w ← f−1

sk (y), s‖t← w, r ← H(s)⊕ t

if (r, ∗) /∈ Glist then reject

x← G(r)⊕ s[0 · · ·n− 1], c← s[n · · ·n + k1 − 1]
if (r, x, ∗) /∈ H’list then reject

if c = H’(r‖x) then return x else return reject

Let F1 be the event that a ciphertext is rejected in Game 1 that would not have been rejected
in Game 0’. Consider a ciphertext y submitted to the decryption oracle (denote w, s, t, . . . the values
computed in Game 0’), and denote by F ′1 the event that y is rejected in Game 1 but would not in
Game 0’. We have F ′1 ⇔ (H ′(r‖x) = c ∧ (r, x, ∗) /∈ H′list) (recall that we assumed that if the adversary
has queried H ′(r‖x) then he has already queried G(r)), and thus

Pr[F ′1] ≤ Pr[H ′(r‖x) = c | (r, x, ∗) /∈ H′list] = 2−k1 .

From the union bound we conclude that Pr[F1] ≤ qd/2k1 . Since both games proceed identically unless
F1 occurs, the difference lemma gives

|Pr[S1]− Pr[S0′]| ≤ qd/2k1 . (27)

Game 2: We modify the decryption oracle again. Let y be a ciphertext submitted to the decryption
oracle. If the previous decryption oracle rejects y, so does the new one. However, the new decryption
oracle also reject y when H(s) has not been queried yet. Note that in Game 2, the decryption oracle
never queries G, H, or H ′ at point other than at which the adversary did.

24

function Decryption Oracle(y)
w ← f−1

sk (y), s‖t← w

if (s, ∗) /∈ Hlist then reject

r ← H(s)⊕ t
if (r, ∗) /∈ Glist then reject
x← G(r)⊕ s[0 · · ·n− 1], c← s[n · · ·n + k1 − 1]
if (r, x, ∗) /∈ H’list then reject
if c = H’(r‖x) then return x else return reject

Let F2 be the event that a ciphertext is rejected in Game 2 that would not have been rejected in
Game 1. To compute Pr[F2], we consider a ciphertext y submitted to the decryption oracle such that
H(s) has not been queried yet (so that y is rejected by Game 2) and evaluate the probability that y is
accepted in Game 1:

• If the encryption oracle has not been queried yet or if s 6= s?, then H(s) has never been queried before,
either by the adversary or the encryption oracle. Thus, H(s) is a fresh random value independent of
the adversary’s view. As r ← H(s) ⊕ t, this is also the case of r. If y is not rejected by Game 1, it
must be the case that G(r) has been queried by the adversary, which occurs with a probability at
most qg/2k0 . Over the course of the entire attack, the probabilities sum to qdqg/2k0 .

• If the encryption oracle has already been queried and s = s?, it must be the case that t 6= t? (as
y 6= y?). Moreover, s = s? and t 6= t? implies r 6= r? and thus r‖x 6= r?‖x?. If y is accepted in
Game 1, it must be the case that H ′(r‖x) = H ′(r?‖x?) (as s = s? implies c = c?). This last event
occurs with probability 2−k1 (note that no birthday attack can be possible here as r?‖x? are fixed
by the challenger). Overall, the probability that such a collision occur over the course of the attack
is qh′/2k1 .

We conclude that Pr[F2] ≤ qh′/2k1 + qdqg/2k0 , so that

|Pr[S2]− Pr[S1]| ≤ qh′/2k1 + qdqg/2k0 . (28)

Game 3: We modify the decryption oracle so that it does not make use of the secret key anymore. Both
games will be equivalent. Recall that for each triplet (r, x, h′) found in H′list, we know for sure that there
exists some g such that (r, g) ∈ Glist.

Note that the time and space complexities of this algorithm are linear with respect to the total
number of queries made to the oracles. Note also that any ciphertext rejected by Game 3 would also be
rejected by Game 2. It follows that

Pr[S3] = Pr[S2]. (29)

function Decryption Oracle(y)

foreach (r, x, h′) ∈ H’list do
Look for (r, g) ∈ Glist
s← (g ⊕ x)‖h′
if (s, h) ∈ Hlist then

t← h⊕ r, w ← s‖t, ŷ = fpk(w)
if ŷ = y then return x

end
end
return reject

Game 4 : We only perform a bridging step here. We first modify the encryption oracle as follows:
instead of choosing r? at random at the time of encryption, we choose it at the beginning of the game.
This makes no difference from the adversary point of view. Similarly, as r? is known from the beginning,
we can set the value of G(r?) (still at random) right away. Once this is done, we add a new random oracle
H? : {0, 1}n → {0, 1}k1 which will sometimes answer instead of H ′: if H ′ is queried at a point r?‖x for

25

some x, then the answer is H?(x). As the distribution of the triplet (r, x, H ′(r‖x)) remains unchanged,
adding this new random oracle makes no difference from the adversary point of view. Finally,

Pr[S4] = Pr[S3]. (30)

(pk, sk) r←− K(1k), r? r←− {0, 1}k0 , g? r←− {0, 1}n, Glist← {(r?, g?)}, H? r←− Γn,k1 , H’list← ∅,
Hlist← ∅, i, j, k, `← 0 /* Global Vars */
r

r←− R, view← {r, pk}
Oracle Queries(A, view,⊥)
(x0, x1)← A(view), (y?, bit)← Encryption Oracle(x0, x1), view← view ∪ {y?}
Oracle Queries(A, view, y?)

b̂it← A(view)
if b̂it = bit then return 1 else return 0

function H’(r‖x)
if r = r? then return H?(x)

if (r, x, h′) ∈ H’list then return h′ else h′ r←− {0, 1}k1 , H’list← H’list ∪ {(r, x, h′)}, return h′

function Encryption Oracle(x1, x2)

bit
r←− {0, 1}, x? ← xbit

s? ← (g? ⊕ x?)‖H?(x?) , t? ← H(s?)⊕ r?, w? ← s?‖t?, y? ← fpk(w?)
return (y?, bit)

Game 5: In this game we drop two rules so that y? is a random string independent from view.

(pk, sk) r←− K(1k), r? r←− {0, 1}k0 , g? r←− {0, 1}n, Glist← ∅ , H? r←− Γn,k1 , H’list← ∅, Hlist← ∅,
i, j, k, `← 0 /* Global Vars */
r

r←− R, view← {r, pk}
Oracle Queries(A, view,⊥)
(x0, x1)← A(view), (y?, bit)← Encryption Oracle(x0, x1), view← view ∪ {y?}
Oracle Queries(A, view, y?)

b̂it← A(view)
if b̂it = bit then return 1 else return 0

function H’(r‖x)
/* rule removed */

if (r, x, h′) ∈ H’list then return h′ else h′ r←− {0, 1}k1 , H’list← H’list ∪ {(r, x, h′)}, return h′

Here, as both g? and H? (and thus H?(x?)) are not used anywhere else than in the encryption oracle,
then both s? and t? (and thus w?) are independent of x?. Consequently, in Game 5 we have

Pr[S5] =
1
2
. (31)

Games 4 and 5 proceed identically unless the adversary queries G at point r? or H ′ at point r?‖x for
some x ∈ {0, 1}n (note that if the latter case occurs then, by assumption, G has already been queried
at point r?). Let F5 be the event that in Game 5, the adversary queries G at point r?. As both games
proceed identically unless F5 occurs,

|Pr[S5]− Pr[S4]| ≤ Pr[F5]. (32)

All we need to do now is to bound Pr[F5]. To do this we introduce a last game, equivalent to this one,
but easier to study.

26

Game 5’ : As the encryption oracle outputs a bitstring independent from the adversary view (and in
particular from x? and thus from both x1 and x2), we can set y? (and w?, s?, and t?) right from the
beginning of the game. When the encryption oracle is queried, it simply returns y?. These modifications
do not affect the value of Pr[F5].

(pk, sk) r←− K(1k), r? r←− {0, 1}k0 , g? r←− {0, 1}n, Glist← ∅, H? r←− Γn,k1 , H’list← ∅, Hlist← ∅,
i, j, k, `← 0 /* Global Vars */

y? r←− {0, 1}k, w? ← f−1
sk (y?), s?‖t? ← w?, r? ← H(s?)⊕ t? /* Global Vars */

r
r←− R, view← {r, pk}

Oracle Queries(A, view,⊥)
(x0, x1)← A(view), (y?, bit)← Encryption Oracle(x0, x1), view← view ∪ {y?}
Oracle Queries(A, view, y?)

b̂it← A(view)
if b̂it = bit then return 1 else return 0

function Encryption Oracle(x1, x2)

bit
r←− {0, 1}, x? ← xbit

/* rules removed */
return (y?, bit)

Let F ′5 the event that the adversary queries H at s? in this new game. We have

Pr[F5] = Pr[F5 ∧ F ′5] + Pr[F5 ∧ F ′5].

• We first bound Pr[F5 ∧F ′5]: if the adversary has queried r? to G and s? to H, it is possible to define
and inverting adversary A′ (that recovers f−1

sk (y?) successfully) as follows: A′ first runs A and then
enumerates all (r, g) ∈ Glist and (s, h) ∈ Hlist and for each of these computes:

t← h⊕ r, w ← s‖t, y ← fpk(w).

If y = y? (which eventually happens in this case), A′ outputs w and thus successfully inverts fpk.
Consequently,

Pr[F5 ∧ F ′5] ≤ Succow
fpk

(A′).
At this point, it is important to note that A′ is efficient. Indeed, the running time of A′ is equal to
that of A (which was shown to be linear with respect to the total number of queries made to the
oracles) plus a factor proportional to qgqhTf where Tf is the time required to evaluate fpk(·). The
space requirements of A′ are essentially the same as those of A.
• We bound Pr[F5 ∧ F ′5]: In that case, H has not been queried at point s?. As r? ← H(s?)⊕ t?, r? is

independent from view and thus the probability that r? is queried to G over the course of the entire
attack is bounded by qg/2k0 . We obtain

Pr[F5 ∧ F ′5] ≤ qg/2k0 .

From these two cases we obtain that

Pr[F5] ≤ Succow
fpk

(A′) + qg/2k0 . (33)

Conclusion: From equations (25), (26), (27), (28), (29), (30), (31), (32), and (33), we conclude that

Succcca
oaep+(A) ≤ Succow

fpk
(A′) + qg(1 + qd)/2k0 + (qh′ + qd)/2k1 .

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key
encryption schemes. In Krawczyk [19], pages 26–45.

27

2. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks. In
B. Preneel, editor, Advances in Cryptology - Eurocrypt’00, volume 1807 of LNCS, pages 139–155. Springer-
Verlag, 2000.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
ACM Conference on Computer and Communications Security, pages 62–73, 1993.

4. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. De Santis, editor, Advances in Cryptology
- Eurocrypt’94, volume 950 of LNCS, pages 92–111. Springer-Verlag, 1995.

5. M. Bellare and P. Rogaway. The exact security of digital signatures - how to sign with RSA and Rabin. In
U. Maurer, editor, Advances in Cryptology - Eurocrypt’96, volume 1070 of LNCS, pages 399–416. Springer-
Verlag, 1996.

6. L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator. SIAM Journal
on Computing, 15(2):364–383, May 1986.

7. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In Proc. of the 30th
STOC, pages 209–218. ACM Press, 1998.

8. B. Chor and R.L. Rivest. A knapsack type public key cryptosystem based on arithmetic in finite fields. In
G. Blakley and D. Chaum, editors, Advances in Cryptology - Crypto’84, volume 196 of LNCS, pages 54–65.
Springer-Verlag, 1985.

9. J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Advances in Cryptology -
Crypto’00, number 1880 in LNCS, pages 229–235. Springer-Verlag, 2000.

10. J. Daemen and V. Rijmen. The Design of Rijndael. Information Security and Cryptography. Springer-Verlag,
2002.

11. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
A. M. Odlyzko, editor, Advances in Cryptology - Crypto’86, volume 263 of LNCS, pages 186–194. Springer-
Verlag, 1987.

12. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA assumption. In
Kilian [16], pages 260–274.

13. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences, 28(2):270–
299, 1984.

14. S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

15. L. Keliher. Refined analysis of bounds related to linear and differential cryptanalysis for the AES. In
H. Dobbertin, V. Rijmen, and A. Sowa, editors, Fourth Conference on the Advanced Encryption Standard -
AES4, volume 3373 of LNCS, pages 42–57. Springer-Verlag, 2005.

16. J. Kilian, editor. Advances in Cryptology - Crypto 2001, volume 2139 of LNCS. Springer-Verlag, 2001.
17. N. Koblitz and A. Menezes. Another look at ”provable security”. II. Available on the IACR eprint archive:

http://eprint.iacr.org/2006/229.pdf, July 2006.
18. N. Koblitz and A. Menezes. Another look at ”provable security”. Journal of Cryptology, 20(1):3–37, 2007.
19. H. Krawczyk, editor. Advances in Cryptology - crypto’98, volume 1462 of LNCS. Springer-Verlag, 1998.
20. M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor, Advances in Cryptology -

Eurocrypt’93, volume 765 of LNCS, pages 386–397. Springer-Verlag, 1994.
21. National Bureau of Standards, U. S. Department of Commerce. Data Encryption Standard, 1977.
22. National Insitute of Standards and Technology. FIPS Publication 180-1: Secure Hash Standard, 1995.
23. K. Ohta and T. Okamoto. On concrete security treatment of signatures derived from identification. In

Krawczyk [19], pages 354–369.
24. D. Pointcheval. Advanced Course on Contemporary Cryptology - Provable Security for Public Key Schemes,

pages 133–189. Birkhäuser Publishers, June 2005. Available at http://www.di.ens.fr/∼pointche/.
25. M.O. Rabin. Digitalized signatures and public-key functions as intractable as factorization. MIT/LCS/TR-

212,MIT Laboratory for Computer Science, 1979.
26. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In

J. Feigenbaum, editor, Advances in Cryptology - Crypto’91, volume 576 of LNCS, pages 433–444. Springer-
Verlag, 1991.

27. R.L. Rivest. The MD5 message-digest algorithm. Request for Comments (RFC) 1321, April 1992. Presented
at the rump session of Crypto’91.

28. V. Shoup. OAEP reconsidered. In Kilian [16], pages 239–259.
29. V. Shoup. OAEP reconsidered. Journal of Cryptology, 15(4):223–249, 2002.
30. V. Shoup. Sequences of games: A tool for taming complexity of security proofs, 2006. Available on

http://shoup.net.
31. A. Sidorenko and B. Schoenmakers. Concrete security of the Blum-Blum-Shub pseudorandom generator. In

N.P. Smart, editor, IMA Int. Conf., volume 3796 of LNCS, pages 355–375. Springer-Verlag, 2005.
32. S. Vaudenay. Cryptanalysis of the Chor-Rivest cryptosystem. In Krawczyk [19], pages 243–256.
33. U. Vazirani and V. Vazirani. Efficient and secure pseudo-random number generation (extended abstract). In

Proceedings of FOCS’84, pages 458–463. IEEE, 1985.

28

