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A Typical Iterated Block Cipher

¢ A block cipher on a finite set is a family
of permutations on that set, indexed
by a parameter call the key.
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e A block cipher on a finite set is a family
of permutations on that set, indexed
by a parameter call the key.

e Such a cipher is usually iterated, i.e.,
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A Typical Iterated Block Cipher

e A block cipher on a finite set is a family
of permutations on that set, indexed
by a parameter call the key.

e Such a cipher is usually iterated, i.e.,
made of several rounds.

e Fach round is parameterized by a key
derived from the main secret key by
means of a Key Schedule.

e Usually, the rounds all share the same
design, e.g., a round key addition
followed by a fixed (nonlinear)
transformation.
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Motivation

“[...] the methodology of
provable security has become
unavoidable in designing and

evaluating new schemes”

[JSe03]
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Motivation

“[...] the methodology of
provable security has become
unavoidable in designing and

evaluating new schemes”
[JSe03]

We will provide tools to evaluate and design new schemes!
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Part |: On the (In)Security of Block Ciphers:

Tools for the Security Analysis




Outline

Distinguishers between two sources

Projection-based distinguishers
between two sources

Practical Implications for block ciphers
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Outline

B Distinguishers between two sources

Projection-based distinguishers
between two sources

Practical Implications for block ciphers

e The game: distinguishing between two
sources of randomness

¢ The optimal solution
e Complexity analysis: How many

samples do we need to distinguish
with a given efficiency?
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Outline

Distinguishers between two sources e \What if the optimal solution cannot be

implemented?
ﬂ Projection-based distinguishers

between two sources ¢ Distinguishing in practice using
compression

Practical Implications for block ciphers

e Example: Generalized linear

distinguisher
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Outline

Distinguishers between two sources

Projection-based distinguishers
between two sources

) Practical Implications for block ciphers

* From random sources to random
permutations

e A toolbox for generalized linear
cryptanalysis of block ciphers

e Cryptanalysis of SAFER K/SK

e DEAN

Thomas Baigneres

PhD Defense




Outline

Distinguishers between two sources ¢ From random sources to random
permutations
Projection-based distinguishers
between two sources e A toolbox for generalized linear
cryptanalysis of block ciphers
‘ Practical Implications for block ciphers
e Cryptanalysis of SAFER K/SK

e DEAN

[BJVa04] IBSVsac07] [BVicits08]
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Part |: On the (In)Security of Block Ciphers:
Tools for the Security Analysis
o Distinguisher between two Sources




The Game

e Py and P; are two arbitrary distributions over a finite set Z.
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The Game

e Py and P; are two arbitrary distributions over a finite set Z.
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distribution
Po or Py

e S generates g samples ~ Py or Py

e A outputs 1 iff it guesses that P, is the the correct distribution
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The Game

e Py and P; are two arbitrary distributions over a finite set Z.

/_\

distribution
Po or Py

e S generates g samples ~ Py or Py

e A outputs 1 iff it guesses that P, is the the correct distribution

e The ability of A to distinguish Py from P; is its advantage:

[ AdVA(PO, Pl) — ’Prpo [.A(Zl, B Zq) = 1] — Pl‘p1 [.A(Zl, .
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An Optimal Distinguisher

e Ais computationally unbounded (deterministic)
e ¢ samples are independent (order is irrelevant)
e What matters: the number of occurrences of each symbol of Z in the string 71, ..., Z,

e Equivalently: the type Pz, .~ of the sequence:

#{Z . Zz :a}
q

Pz, .zlal =
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An Optimal Distinguisher

e Ais computationally unbounded (deterministic)
e ¢ samples are independent (order is irrelevant)
¢ \What matters: the number of occurrences of each symbol of Z in the string 71, . ..

e Equivalently: the type Pz, .~ of the sequence:

#{Z . Zz :a}
q

Pz, .zlal =

e Example: Z = {1,2,3}, ¢ =13 and Zy,Z,,...,Z13 = 1322312313221

4 5! 4

— 1_3 PZl,---,Zlfa[Q] — 9 PZly---aZL‘B[B] — 15

P 1
Zl7'°°aZ13[ ] 13 13
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An Optimal Distinguisher

A uniquely determined by I1,:
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An Optimal Distinguisher

A uniquely determined by I1,,:

Number of such II,, is finite 8 Number of possible adversaries is finite.
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An Optimal Distinguisher

A uniquely determined by I1,,:

Number of such II,, is finite 8 Number of possible adversaries is finite.

[An optimal distinguisher exists!j

? Can it be determined?
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An Optimal Distinguisher

Using maximume-likelihood techniques, the g-limited distinguisher A* defined by

[H*:{P : D(P||P1) — D(P||Pg) SO}j

can be shown to be optimal.
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An Optimal Distinguisher

Using maximume-likelihood techniques, the g-limited distinguisher A* defined by

[H* = {P : D(P||P1) — D(P||Pg) < O}j

can be shown to be optimal.

always non-negative, 0 iff p=gq, infinite iff Supp(p) € Supp(q)
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Data Complexity Analysis

Using the asymptotic data complexity of A*.
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Data Complexity Analysis

Using the theory of types & Sanov’s theorem ‘ asymptotic data complexity of A*.
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Data Complexity Analysis

Using the theory of types & Sanov’s theorem * asymptotic data complexity of A*.

Theorem

Let P, and P; be two distributions s.t. Supp(Pg) U Supp(P1) = Z. The advantage of
A* verifies

[ 1 — BestAdv,(Pg, P1) = 9—qC(Po,P1) j

C(Po,P1) = — inf log > Pola]'~*P1[a]?
Jeasd a€Supp(Po)NSupp(P1)

is the Chernoff information between Py and P; .
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Data Complexity Analysis

Using the theory of types & Sanov’s theorem * asymptotic data complexity of A*.

Theorem

Let P, and P; be two distributions s.t. Supp(Pg) U Supp(P1) = Z. The advantage of
A* verifies

[ 1 — BestAdv,(Pg, P1) = 9—qC(Po,P1) j

C(Po,P1) = — inf log > Pola]'~*P1[a]?
Jeasd a€Supp(Po)NSupp(P1)

is the Chernoff information between Py and P; .

Notation: f(q) = g(q) means that f(q) = g(¢)e°?, i.e., lim 1log fa) _ 0.

a—o0 q  g(q)
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Data Complexity Analysis

Using the theory of types & Sanov’s theorem * asymptotic data complexity of A*.

Theorem

Let P, and P; be two distributions s.t. Supp(Pg) U Supp(P1) = Z. The advantage of
A* verifies

[ 1 — BestAdv,(Pg, P1) = 9—qC(Po,P1) j

PL — Poll2
C(PO,Pl) ~ H 1811120“2

is the Chernoff information between Py and P; .

Notation: f(q) = g(q) means that f(q) = g(¢)e°?, i.e., lim 1log fa) _ 0.

a—o0 q  g(q)
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Data Complexity Analysis

Using the theory of types & Sanov’s theorem * asymptotic data complexity of A*.

Theorem

Let P, and P; be two distributions s.t. Supp(Pg) U Supp(P1) = Z. The advantage of
A* verifies

[ 1 — BestAdv,(Pg, P1) ~ 279¢(Fo,P1) j

PL — Poll2
C(PO,Pl) ~ H 1811120“2

is the Chernoff information between Py and P; .
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Data Complexity Analysis

Using the theory of types & Sanov’s theorem ! asymptotic data complexity of A*.
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—xample: Biased Coin

Po = (5, %) Plz((l—e),%(l—l—e))

CPo, P1) =~ oigillog% (1—e)*+(1+¢?)
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Siased Coin

Example with ¢ = 0.01

PO:( ; )

C(Pg,P1) = — inf logi ({

0<A<1 2\
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Siased Coin

Example with ¢ = 0.01

Po=(5,5) P

C(Pg,P1) = — inf logi ({

0<A<1 2\

Minimum reached for \ ~ %

2 2
C(Pg,P1) =~ —log (1 — 6) ~—

8 81n 2
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Siased Coin

Example with ¢ = 0.01

Po=(5,5) P

C(Pg,P1) = — inf log 2 ({

0<A<1 2\

Minimum reached for \ ~ %

62 62
Po,P1) =~ —1 l1—— | ~

Approximating 1 — BestAdv,(Po,P1) by its asymptotic value, we deduce that

N 81n 2
q ~ 62

allow to reach a non-negligible advantage.
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C(Po,Pl) = Inax lOg( 6

A
0< <1 22+4
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P, P;) — ]
C(Po, P1) DAl O

Thomas Baigneres PhD Defense



P, P} — ]
C(Po, P1) DAl O

1 — BestAdv,(Pg, Py) = 2702034
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—xample: Biased

Po = (

P, P} — ]
C(Po, P1) DAl O

1 — BestAdv,(Pg, Py) = 2702034

= This is the proof that all this theory has a practical application...
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—xtensions

e Case where the distributions are “close” to each other
e Case where one of the hypotheses is composite
e Case where one of the two distributions is unknown

® cfc.
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Part |: On the (In)Security of Block Ciphers:

Tools for the Security Analysis
¥ Projection Based Distinguishers




On the Need for

Projection-

Based Distinguishers

o If | Z]|is too large, the best distinguisher cannot be implemented.
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On the Need for

Projection-

Based

Distinguishers

e If | Z]|is too large, the best distinguisher cannot be implemented.

¢ Possible solution: reduce the sample size using a projection:

« Distinguish in G instead
of Z.

O This reduces the power
of the distinguisher.

Thomas Baigneres
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—xample: Linear Distinguishers

e Z={0,1}" G={0,1} Py=U P, =P h(Zd)=a-Z=a1Z1B - DB a2,

e Thisis a based on the a.
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—xample: Linear Distinguishers

e Z={0,1}" G={0,1} Py=U P, =P h(Zd)=a-Z=a1Z1B - DB a2,

e This is a linear distinguisher based on the mask a.

e By implementing the optimal strategy (after the linear compression), the
advantage of this linear distinguisher verifies:

[ 1 — Adv(U, P) = 2-96(UP) )
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—xample: Linear Distinguishers

.Z:{O,l}n Q:{O,l} PO:U P1:P ]’L(Z):CLZ:CLlZl@@CLnZn

e This is a linear distinguisher based on the mask a.

e By implementing the optimal strategy (after the linear compression), the
advantage of this linear distinguisher verifies:

[ 1 — Adv(U, P) = 2-9€(UP)

a- 7 ~P & Z~P
a-Z~U & Z~U
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—xample: Linear Distinguishers

‘Z:{O,l}n Q:{O,l} PO:U P1:P ]’L(Z):CLZ:CLlZl@@CLnZn

e This is a linear distinguisher based on the mask a.

e By implementing the optimal strategy (after the linear compression), the
advantage of this linear distinguisher verifies:

[ 1 — Adv(U, P) = 2-9€(UP)

a- 7 ~P & Z~P
a-Z~U & Z~U

» Definition: linear probability of P: [LPC,,(P) = (Ep ((—1)a'Z))2]
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—xample: Linear Distinguishers

‘Z:{O,l}n Q:{O,l} PO:U P1:P ]’L(Z):CLZ:CLlZl@@CLnZn

e This is a linear distinguisher based on the mask a.

e By implementing the optimal strategy (after the linear compression), the
advantage of this linear distinguisher verifies:

[ 1 — Adv(U, P) = 2-9€(UP)

a- 7 ~P & Z~P
a-Z~U & Z~U

» Definition: linear probability of P: [LPC,,(P) = (Ep ((—1)a'2))2]

81n 2
e Roughly: C(U,P) = LPa(P) ? (q - )j are enough (well known...)

1n 2 "~ LP,(P
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—xtending the Notion of Linear Probability

* The previous example only works for sets of the form Z = {0,1}".

e \We at least need to generalize the notion of linear probability to arbitrary sets.
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—xtending the Notion of Linear Probability

* The previous example only works for sets of the form Z = {0,1}".

e \We at least need to generalize the notion of linear probability to arbitrary sets.

" Definition

The linear probability of P over the group Z with respect to the character x is

LP,(P) = [Ep (x(2)) I
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—xtending the Notion of Linear Probability

* The previous example only works for sets of the form Z = {0,1}".

e \We at least need to generalize the notion of linear probability to arbitrary sets.

" Definition

The linear probability of P over the group Z with respect to the character x is

LP,(P) = [Ep (x(2)) I

e A character of Z is a homomorphism y : Z — C*

e Example: when Z = {0,1}" we have x(a) = (—1)"“" for some u
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—xtending the Notion of Linear Probability

* The previous example only works for sets of the form Z = {0,1}".

e \We at least need to generalize the notion of linear probability to arbitrary sets.

" Definition

The linear probability of P over the group Z with respect to the character x is

LP,(P) = [Ep (x(2)) I

e A character of Z is a homomorphism y : Z — C*
e Example: when Z = {0,1}" we have x(a) = (—1)"“" for some u

e Consequence: when Z = {0,1}" this new definition corresponds to the old one!

Thomas Baigneres PhD Defense



Lin. Distinguishers for Sources overs Arbitrary Sets

We have wonderful lemma...

Thomas Baigneres PhD Defense



Lin. Distinguishers for Sources overs Arbitrary Sets

We have wonderful lemma...

Lemma 7.5 Let Py be the uniform distribution on a finite subgroup H of C* of order d.
Let D = {P, : u € H} be a set of d distributions on H defined by (7.10). The g-limited
distinguisher between the null hypothesis Hy : P = Py and the alternate hypothesis
Hy : P € D defined by the distribution acceptance region Iy = I1* NPy, where

. . log(1 — €)
= {PeP Pz S T

is asymptotically optimal and its advantage BestAdv, is such that

1— BestAqu(HO, Hy) = 99info<a<1 log 2 ((1+(d—1)e)*+(d—1)(1—¢) )

Thomas Baigneres PhD Defense




Lin. Distinguishers for Sources overs Arbitrary Sets

We have wonderful lemma...
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Distinguishing Random Permutations

e A simple trick allows to turn distinguishers of random sources into distinguishers
of random permutations (block ciphers).

e All the results on random sources apply to random permutations.

* |n the case of the generalization of linear cryptanalysis:

LP, . (Ck) = |EPeUT<ﬁ(P)“(C’“(P)))‘2
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Distinguishing Random Permutations

e A simple trick allows to turn distinguishers of random sources into distinguishers
of random permutations (block ciphers).

e All the results on random sources apply to random permutations.

* |n the case of the generalization of linear cryptanalysis:

LP, . (Cy) = |EPeUT<ﬁ(P)“(C’“(P)))‘2

e ELP, . (C) = Ex (LP, . (Ck))

¢ g~ 38In2/ELP, ,(C) I Eind p and p which maximize the ELP j

Thomas Baigneres 23 PhD Defense



How to find the best input/output characters?

e Apply a bottom-up approach
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How to find the best input/output characters?

e Apply a bottom-up approach

e \We provide a toolbox that allows, for
any given output character, to find the
Input characters that maximizes the
ELP over various building blocks.

LP

With x = xal - - [Ix»  LP, , “by hand”
LPxohom,x =1
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How to find the best input/output characters?

e Apply a bottom-up approach

e \We provide a toolbox that allows, for
any given output character, to find the
iInput characters that maximizes the
ELP over various

e Fasy to deduce a ELP over
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How to find the best input/output characters?

e Apply a bottom-up approach

e \We provide a toolbox that allows, for
any given output character, to find the
iInput characters that maximizes the
ELP over various building blocks.

e Fasy to deduce a ELP over one round

e For a Markov cipher C =R30 Ry 0 Ry,
we show that Nyberg’s linear hull effect
applies:

3
ELPXO,Xs(C) — Z HELPXi—LXi(R’i)

X1,X2 1=1
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How to find the best input/output characters?

e Apply a bottom-up approach

e \We provide a toolbox that allows, for
any given output character, to find the
iInput characters that maximizes the
ELP over various building blocks.

e Fasy to deduce a ELP over one round

e For a Markov cipher C =R30 Ry 0 Ry,
we show that Nyberg’s linear hull effect
applies:

3
ELPXO,Xs(C) — Z HELPXi—LXi(R’i)

X1,X2 1=1

e Use the last property to pile ELP’s up:
3

ELP,,,.(C) > [[ ELP,,_, (R}
1=1
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Applications on SAFER K/SK

e \We attack SAFER with a B-linear cryptanalysis.
e Use the toolbox to find characteristics within SAFER K/SK.

e To compute the complexities we consider several characteristics among the hull
(i.e., all characteristics share the same input/output characters).

e o turn distinguishing attacks into key recovery attacks, we also take advantage
of the linearity of the key schedule.
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Applications on SAFER K/SK

e \We attack SAFER with a B-linear cryptanalysis.
e Use the toolbox to find characteristics within SAFER K/SK.

e To compute the complexities we consider several characteristics among the hull
(i.e., all characteristics share the same input/output characters).

e o turn distinguishing attacks into key recovery attacks, we also take advantage
of the linearity of the key schedule.

Nbr Rounds Complexity
2 223/231

3
4
5
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Other Applications

e Two new Digital Encryption Algorithm for Numbers (based on the AES): DEAN18
and DEANZ27 which respectively encrypts blocks made of 18 and 27 decimal
digits.

e Resistance against our generalization of linear cryptanalysis.

e New attacks on TOY100 (toy cipher that encrypts blocks of 32 decimal digits).

e Break 9 (10 ?) rounds out of 12.
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Designs and Security




Outline

The Decorrelation Theory
Dial C for Cipher

KFC: the Krazy Feistel Cipher

Critics
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Outline

) The Decorrelation Theory e The Luby-Rackoff Model

Dial C for Cipher e The quantity to minimize: the
advantage of an adversary A
KFC: the Krazy Feistel Cipher
e Distribution matrix of a block cipher
Critics
¢ Link between the advantage of A and
the distance between distribution
matrices

e Basic properties and decorrelation
modules
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Outline

The Decorrelation Theory

m) Dial C for Cipher Hound 1 }

KFC: the Krazy Feistel Cipher Round 2

Critics

Round 3

Round 10}
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Outline

The Decorrelation Theory

Dial C for Cipher

) KFC: the Krazy Feistel Cipher

Critics
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Outline

The Decorrelation Theory ¢ |Independence of the round keys

Dial C for Cipher e Couldn’t we use the Vernam cipher
instead?

KFC: the Krazy Feistel Cipher

) Critics
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Outline

The Decorrelation Theory ¢ |Independence of the round keys

Dial C for Cipher e Couldn’t we use the Vernam cipher
instead?

KFC: the Krazy Feistel Cipher

) Critics

[BVsac05] [BFsac06]
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Part ||

Designs and Security Proofs

o [he Decorrelation Theory




The Luby-Rackoff Model

We consider a g-limited adversary A in the Luby-Rackoff Model:

e computationally unbounded

* [imited to q queries to an oracle O implementing either
e a random instance C of the block cipher
e a random instance C* of the perfect cipher

* the objective of A being to guess which is the case.
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The Luby-Rackoff Model

We consider a g-limited adversary A in the Luby-Rackoff Model:

q plaintexts

s

g ciphertexts
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The Luby-Rackoff Model

We consider a g-limited adversary A in the Luby-Rackoff Model:

q plaintexts

N

g ciphertexts

[AdV_A(C, C*) = | Pr[A(C) = 1] — Pr[A(C") = 1”}

Advantage of the ¢-limited adversary A between C and C*

«/ The block cipher C is secure if the advantage of A is negligible for all A’s.
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The Luby-Rackoff Model

We consider a g-limited adversary A in the Luby-Rackoff Model:

pl,...,pq

s

O(p1)7 R O(pQ)

A is non-adaptive if the ¢ plaintexts are chosen “at once”.
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The Luby-Rackoff Model

We consider a g-limited adversary A in the Luby-Rackoff Model:

A is adaptive if plaintext : depends on ciphertexts 1,...,7 — 1.
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Computing Adv4(C, C*)

e Computing the advantage is not a trivial task in general.

e Possible solution: use Vaudenay’s Decorrelation Theory.

A

( max Adv 4 (C, C*) = 5||[C]¢ — [C*]¢| j
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Computing Adv4(C, C*)

e Computing the advantage is not a trivial task in general.

e Possible solution: use Vaudenay’s Decorrelation Theory.

[ mj%XAdV_A(C, C*) = 2|[[C]? = [C*]9] j

C

( Pr = Pr|C(z;1) = 1, S G j

"'(ylv'”qu)

T —1
| I
-
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—xample!

On the set M={1,2,3}, the distribution matrices of the perfect cipher C* look like this
(at orders 1 and 2):

'173 173 1?3‘
' =|1/3 1/3 1/3
1/3 1/3 1/3

Py — — Py
— ~ ™ —

-
- A A N
SNS— SN— S— S

0 0 0
1/6 1/6 1/6
1/6 1/6 1/6
1/6 1/6 1/6

0 0 0
1/6 1/6 1/6
1/6 1/6 1/6
1/6 1/6 1/6

0 0
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Adaptive vs. non-Adaptive Adversaries

e The norm used to compute the distance between two distribution matrices depends
on the kind of adversary we consider.

e If Ais adaptive: ( HJIAELXAdVAa(C, CHS %H[C]q — [C*]9]a j

[ M ||, = maxz

e |f A is non-adaptive:
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Are we done then? Not Quite :-<
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Are we done then? Not Quite :-<

< >

M

x IM1| = 21287 for a 128-bits block cipher
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Tricks for Computing Adv 4(C, C*)

To deal with the size of the distribution matrices:

T [CQ O Cl]q = [Cl]q X [Cg]q l

A

l Independent
Z°1 permutations

[VauO3]
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Tricks for Computing Adv 4(C, C*)

To deal with the size of the distribution matrices:

T [CooG]? =[G x [Ca)?

VQ

l .. Independent
( 2=~ permutations

[VauO3]

** Take advantage of the symmetries of the block cipher in order to compute the

distribution matrix of each round

4« Use decorrelation modules!
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Notations...

If a = (a1,...,a¢) is an array of m-bit strings, the support of a is the array of {0, 1}¢
with Q’s at the position where the entry of a is zero and 1’s elsewhere

Example:

a = (&1, az, as, CL4> Supp(a’>

The weight w(a) of a is the hamming weight of the support (3 in the example).
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Decorrelation Modules: Layer of S-Boxes

¢ Independent random permutations
® input: a = (ay,...,ay)
e output: b= (b1,...,by)

¢ M =2"
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Decorrelation Modules: Layer of S-Boxes

¢ Independent random permutations
® input: a = (ay,...,ay)
e output: b= (b1,...,by)
°* M =2
For each substitution box:

(L if a; =a, and b; =],
PI‘[S:(CLZ) — bZ,S:(CL;) — b;] — < M(]\14—1) If a; 7& CL; and bf,, 75 b; ,
0

\

otherwise.
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Decorrelation Modules: Layer of S-Boxes

¢ Independent random permutations
® input: a = (ay,...,ay)
e output: b= (b1,...,by)
°* M =2
For each substitution box:

(L if a; =a, and b; =],
PI‘[S:(CLZ) — bZ,S:(CL;) — b;] — < M(]\14—1) If a; 7& CL; and bf,, 75 b; ,
0

\

otherwise.

; PI‘[S:(CLZ) = b;, S;((CL,,L) — b'/w] — ]-supp(ai@a;;):supp(bi@b;)M_1(M _ 1)—w(a¢@ai)
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Decorrelation Modules: Layer of S-Boxes

¢ Independent random permutations
® input: a = (ay,...,ay)
e output: b= (b1,...,by)

¢ M =2"

By independence:

¢
Sty = L] Pr[ST(ai) = b3, S} (a7) = 0]

1=1
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Decorrelation Modules: Layer of S-Boxes

¢ Independent random permutations
® input: a = (ay,...,ay)
e output: b= (b1,...,by)

¢ M =2"

By independence:

¢
Sty = L] Pr[ST(ai) = b3, S} (a7) = 0]

1=1

Q [ [S]%a,a’),(b,b’) ~ 1supp(a@a’)zsupp(b@b’)M_e(M — 1)—w(a@a) j
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Decorrelation Modules: Layer of F-Boxes

e Independent random functions
* input: a = (ay,...,ap)

e output: b= (b1,...,by)

© M =2"
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Decorrelation Modules: Layer of F-Boxes

e Independent random functions

® input: a = (ay,...,a)

e output: b= (b1,...,by)

© M =2"

We obtain in a similar way that:

‘ [ [F]%a’7a/),(b,b/> s 1SUPP(b@b’)§SUpp(a@a/)M_E_w(a’@a) j
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Properties of the two Decorrelation Modules

Introducing the two following transition matrices:

T

lines indexed by pairs of texts

\windexed by supports

—

columns indexed by pairs of texts

lines indexed by supports

/
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Properties of the two Decorrelation Modules

Introducing the two following transition matrices:

p
PS(a,a’)ﬁ u 1vzsupp(a@a’)

— —w
SPV?(aaa’/) - 1’728upp(a@a/)M (M B 1) (7)
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Properties of the two Decorrelation Modules

Introducing the two following transition matrices:

p
PS(a,a7),y = 1y=supp(a®a’)

_K —w
SP., (a.a/) = Ly—supp(a@ay M “(M — 1)~ #)

4 SPxPS=Id and PSxSP=[S]* (similar result for [F]?

4 If M is a 2™ x 22™“matrix such that there exists a 2¢ x 2¢matrix M verifying

M=PS x M x SP

IMlla = [[IM[|oc = [[IM]]]
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. Designs and Security
ial C for Cipher




Description of C

C corresponds to the AES where “addRoundKeys — SubBytes” is replaced by
mutually independent random permutations.
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Description of C

C corresponds to the AES where “addRoundKeys — SubBytes” is replaced by
mutually independent random permutations.

e C is made of 9 identical rounds, followed by a layer
of substitution boxes.

e Cuses16-10 =160 mutually independent random
8-bits substitution boxes

Thomas Baigneres PhD Defense



More Notations...

e A plaintext of C is a 4x4 array of elements of GF(256)

e The support of a plaintext is the 4x4 array with O’s where the plaintext has 0’s and
1’s everywhere else.

plaintext

oz il
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More Notations...

e A plaintext of C is a 4x4 array of elements of GF(256)

e The support of a plaintext is the 4x4 array with 0’s where the plaintext has 0’s and
1’s everywhere else.

plaintext corresponding support

0x2f 0x00 Oxaa 0x90

Oxc2 0x43 0x12 0x01

0x01 0x26 0x00 03
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Computing [C]?

We consider a version of C reduced to 3 rounds:

Sgl) Sgl)
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Computing [C]?

We consider a version of C reduced to 3 rounds:

Sgl) Sgl)
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Computing [C]?

We consider a version of C reduced to 3 rounds:
e
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We consider a version of C reduced to 3 rounds:
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We consider a version of C reduced to 3 rounds:
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Computing [C]?

We consider a version of C reduced to 3 rounds:
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Computing [C]?

We consider a version of C reduced to 3 rounds:
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Computing [C]?

We consider a version of C reduced to 3 rounds:

C]”
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Computing Adv 4(C, C*)

For a r-round version of C we have:
[C]? =PS x (L)" ! xSP

where L is a square matrix indexed by supports (e.g. 2'° x 219)
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Computing Adv 4(C, C*)

For a r-round version of C we have:
[C]? =PS x (L)" ! xSP

where L is a square matrix indexed by supports (e.g. 2'° x 219)

It is easy to show that [C*]* can also be expressed in a similar way:

[C*]? = PS x C* x SP
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Computing Adv 4(C, C*)

For a r-round version of C we have:
[C]* =PSx (L)™' xSP

where L is a square matrix indexed by supports (e.g. 2'¢ x 2'9)

It is easy to show that [C*]? can also be expressed in a similar way:

[C*]? = PS x C* x SP

) [CP—[C)P=PSx((L)""'—C*)xSP
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Computing Adv 4(C, C*)

For a r-round version of C we have:
[C]* =PSx (L)™' xSP

where L is a square matrix indexed by supports (e.g. 2'¢ x 2'9)

It is easy to show that [C*]? can also be expressed in a similar way:

[C*]? = PS x C* x SP

) [CP—[C)P=PSx((L)""'—C*)xSP

1 . -
[ijXAdVA(Ca C) = SIE™ "= C*!Hooj
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Computing Adv 4(C, C*)

For a r-round version of C we have:
[C]* =PSx (L)™' xSP

where L is a square matrix indexed by supports (e.g. 2'¢ x 2'9)

It is easy to show that [C*]? can also be expressed in a similar way:

[C*]? = PS x C* x SP

) [CPP-[C]P=PSx ((L)""'—=Cr) xSP

1 . -
[ijXAdVA(Ca C) = SIE™ "= C*!Hooj

Can we reduce the computational complexity even further?

v Yes! But the diffusion has to be chosen with care...
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Computing Adv 4(C, C*)

The matrix L can be expressed as

Ly = 255_10(7)1\1[% ol

where N[v,~'] is the number of ways of connecting a support - to a support +'.

i+ Using the fact that the MixColumns operation is a linear multipermutation, it can be
shown that N[~,~'] only depends on

= the weights of the diagonals of ~
= the weights of the columns of ~/

=) and thus it is also the case for L
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Computing Adv 4(C, C*)

Looking back on our computation of [C]*:

S
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Looking back on our computation of [C]*:

S
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Computing Adv 4(C, C*)

Looking back on our computation of [C]*:

S
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Computing Adv 4(C, C*)

Looking back on our computation of [C]*:
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Computing Adv 4(C, C*)

Looking back on our computation of [C]*:

— Product of 625x625 matrices
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Computing Adv 4(C, C*)

For a r-round version of C we have:

— r—2 —
[C]QzPSxSWx(LxW) x L x WS x SP

where L and W are a square matrices indexed by patterns of weights (e.g. 625 x 625)
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Computing Adv 4(C, C*)

For a r-round version of C we have:

— r—2 —
[C]QzPSxSWx(LxW) x L x WS x SP

where L and W are a square matrices indexed by patterns of weights (e.g. 625 x 625)

It is easy to show that [C*]* can also be expressed in a similar way:

[C*]Z:PSXSWxﬁxWSxSP
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Computing Adv 4(C, C*)

For a r-round version of C we have:
— r—2 —
[C]QZPSXSWX(LXW) x L x WS x SP
where L and W are a square matrices indexed by patterns of weights (e.g. 625 x 625)
It is easy to show that [C*]? can also be expressed in a similar way:

[C*]Z:PSXSWxﬁxWSxSP

) [C]?—[C]? =PS x SW x ((EXW)TQ xf—?) x WS x SP
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Computing Adv 4(C, C*)

For a r-round version of C we have:
— r—2 —
[C]QZPSXSWX(LXW) x L x WS x SP

where L and W are a square matrices indexed by patterns of weights (e.g. 625 x 625)

It is easy to show that [C*]? can also be expressed in a similar way:

[C*]Z:PSXSWxﬁxWSxSP

) [C]?—[C]? =PS x SW x ((EXW)TQ xf—?) x WS x SP

[mj%x Adv4(C,C") =

Computing the advantage of the best distinguisher (either adaptive or not) only
requires operations on 625 x 625 matrices (instead of 2°°¢ x 22°%jnitially).
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Values of Adv 4(C, C*)
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Values of Adv 4(C, C*)

[ 7/ rounds of C are enough to obtain provable security against 2-limited adversaries j
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Other Security Results

Using decorrelation techniques, the security results concerning 2-limited
adversaries immediately imply security bounds against:

e |inear and differential cryptanalysis (the linear hull and the differentials effect being
taken into account)

e jterated attacks of order 1

After some more computations, we manage to compute the exact security against
LC and DC, prove that no impossible differential exists, and show that C tends
towards the perfect cipher as r increases (as far as LC and DC are concerned).
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Part ||

Designs and Security

Proofs

w KFC: the Krazy Feistel Cipher




What about Higher Orders”?

We did not manage to prove the security of C against higher ¢-limited adversaries
for g > 2.
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What about Higher Orders”

We did not manage to prove the security of C against higher ¢-limited adversaries
for g > 2.

ldea: try to bound the advantage of the best g-limited adversary by that of the best
(g-1)-limited adversary.

Perfectly random permutation VS. Perfectly random functio

. . .

different inputs . different inputs

.

different outputs independent outputs
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Permutations vs. Rand. Functions

2 correlated inputs distinct on each box input

2 correlated outputs 2 independent outputs
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Towards a New Construction




Towards a New Construction

e Non negligible risk of collision after a
F-box
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Towards a New Construction

e Non negligible risk of collision after a
F-box

e Use the “sandwich technique” to
obtain (almost) pairwise independent
inputs before the layer of random
functions.
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Towards a New Construction

e Non negligible risk of collision after a
F-box

e Use the “sandwich technique” to
obtain (almost) pairwise independent
inputs before the layer of random
functions.

e The construction is not invertible. We
plug it in a Feistel scheme.

ﬁﬁa

—8
—8

—8

ﬂ

\/
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Results obtained on KFC

e With this approach, we manage to prove the security against adversaries up to
the order 70 (for an unreasonable set of parameters).

* The bounds are not tight at all it is certainly possible to improve our results.
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Results obtained on KFC

e With this approach, we manage to prove the security against adversaries up to
the order 70 (for an unreasonable set of parameters).

* The bounds are not tight at all » it is certainly possible to improve our results.
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Designs and Security
tics




Requirements & Uncovered Attacks

e C might never fit, say, RFID tags (in the best case, we need 160kB of memory to
store the tables).

e \We proposed so-called “provably secure” block ciphers...
e ...which are not provably secure against all known attacks.

e c.g., Cis not provably secure against cache attacks or saturation attacks.
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On the Independence of the Round Keys

e QOur proofs assume that the round are mutually independent.

e This is not true in practice: thousands of bits of randomness are derived from a
128 bit key.

e Using a cryptographically secure PRNG, we can show that if an attack applies
on the block cipher with the key schedule, but not on the block cipher with
mutually independent rounds, then the PRNG’s sequence can be distinguished
from pure random.
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Two Sides to Every Story

e Pessimistic view (not my favorite):

e Since we need more bits of randomness to generate the boxes than the
number of bits we are allowed to encrypt, why not use the bits generated with
BBS or QUAD as a one-time-pad... and throw away all the constructions? ®

e Optimistic View:

e The assumption about the independence of the round keys has nothing to do
with the block cipher itself, but with the key schedule.

e |f a “provably secure” block cipher is broken by an attack against which it
should resist Q make the key schedule stronger!

e Making sure that the distribution matrix of the block cipher considered is
close to that of C*appears to be very natural. Independently of the key
schedule, it’s a strong security argument.
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Conclusion



“[...] the methodology of
provable security has become
unavoidable in designing and

evaluating new schemes”
[JSe03]
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“[...] the methodology of
provable security has become
unavoidable in designing and

evaluating new schemes”
[JSe03]

public key schemes

We hope to have made
a significant step
towards its extension to
block ciphers!




Thank you for your attention!

©




Publications

[BVicits08] The Complexity of Distinquishing Distributions
Joint work with Serge Vaudenay
Published in the proceedings of ICITS 08 (Calgary, Canada)

[BSVsacO7] Linear Cryptanalysis of Non Binary Ciphers (with an application to SAFER)
Joint work with Jacques Stern & Serge Vaudenay
Published in the proceedings of SAC 07 (Ottawa, Canada)

[BFa06] KFC - The Krazy Feistel Cipher
Joint work with Matthieu Finiasz
Published in the proceedings of Asiacrypt 06 (Shangai, China)

[BFsac06] Dial C for Cipher
Joint work with Matthieu Finiasz
Published in the proceedings of SAC 06 (Montreal, Canada)

[BVsac05] Proving the Security of the AES Substitution-Permutation Network
Joint work with Serge Vaudenay
Published in the proceedings of SAC 05 (Kingston, Canada)

[BJVa04] How Far Can We Go Beyond Linear Cryptanalysis?
Joint work with Pascal Junod & Serge Vaudenay
Published in the proceedings of Asiacrypt 04 (Jeju Island, Korea)

Thomas Baigneres PhD Defense




