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Introduction

1 First glance at linear cryptanalysis

Cryptanalysis is the study of mathematical techniques for attempting to
defeat cryptographic techniques, and, more generally, information secu-
rity services.1

This diploma work will consider a specific type of cryptanalysis, called linear crypt-
analysis. Nowadays, the techniques provided by this theory are systematically taken
into consideration when designing specific types of ciphers, called block cipher.

A block cipher is an encryption scheme which breaks up the plaintext
messages to be transmitted into strings (called blocks) of a fixed length
t over an alphabet A, and encrypts one block at a time.1

Block ciphers are part of a bigger family of encryption scheme, known as symmetric-
key encryption schemes, which use the exact same key to encrypt and to decrypt
blocks of text input. The most important block cipher of the last century is with no
doubt the Data Encryption Standard (DES), which was defined in the mid 1970s,
with the scope to become the US standard. After the National Security Agency
(NSA) confirmed its ability to protect non-classified information, DES was published
as a Federal Standard by the National Institute of Standards and Technology (NIST)
[Nat77]. Since then, this cipher has been a base for the study of block ciphers
security.

1.1 The basic attack

Linear cryptanalysis and Differential cryptanalysis are known to be the two major
attacks against block ciphers. Every single modern block cipher design takes the
results of these two theories into account. Linear cryptanalysis is an original idea
proposed by Mitsuru Matsui, based on previous work [TCG91, GC90, MY92] made
against another block cipher called FEAL [SM87, Miy89, Miy90]. It was first pre-
sented in 1993 at Eurocrypt. Its paper, called Linear cryptanalysis method for DES
Cipher ([Mat93]) proposes a new type of statistical attack. One of the main progress

1As defined in the Handbook of Applied Cryptography [MVV97]
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compared to the differential cryptanalysis of Biham and Shamir ([BS90]) is to be a
known-plaintext attack1, whether differential cryptanalysis is a chosen-plaintext at-
tack2. In its paper, Matsui carries out a first attack against DES, which we describe
briefly here, using notations of Figure 1.

• Considering a n rounds DES, the idea is to find a linear expression approxi-
mating the behavior of n − 1 rounds, depending on plaintext, ciphertext and
key bits. Using Matsui’s convention, we consider that A[i] represents the i-th
bit of a bloc A, and that A[i, j, . . . , k] = A[i] ⊕ A[j] ⊕ . . . ⊕ A[k]. We are thus
looking for equation of the type:

P[i1, i2, . . . , ia]⊕ C[j1, j2, . . . , jb] = K[k1, k2, . . . , kc] ,

where i1, i2, . . . , ia , j1, j2, . . . , jb and k1, k2, . . . , kc denote plaintext bits, ci-
phertext bits and key bits respectively. In the best case (from the point of
view of the cryptanalysis), this equation will hold (or at the contrary will be
false) with a probability p far from 1

2 . One can measure the effectiveness of
such an approximation using the magnitude of

∣∣p− 1
2

∣∣. In order to obtain
such an expression on n− 1 rounds, the cryptanalyst first searches for a linear
approximation of substitution boxes, the only non-linear components of DES,
and then computes an approximation of one round of the cipher. Next, while
using the piling-up lemma, it is possible to build an expression approximating
n− 1 rounds of a cipher given the approximations of every single round.

Lemma 1. Piling-up lemma3 Let Xi (1 ≤ i ≤ n) be independent random
variables whose values are 0 with probability pi or 1 with probability 1 − pi.
Then the probability that X1 ⊕X2 ⊕ . . .⊕Xn = 0 is

1

2
+ 2n−1

n∏

i=1

(
pi −

1

2

)
.

• Once such an expression is computed, the missing round is added in order to
obtain an expression like the following one:

L : P[i1, i2, . . . , ia]⊕C[j1, j2, . . . , jb]⊕F8(C,K
(8))[l1, l2, . . . , ld] = K[k1, k2, . . . , kc] .

In this case, Matsui proceeds to an attack on a 8 rounds DES. He thus finds
an approximation on the first 7 rounds and finally adds the last one. It is
clear that the approximation will involve only a limited number of bits of the
last round key K(8). These bits (plus the parity bit) are those that linear
cryptanalysis will try to recover.

1In a known-plaintext attack, the cryptanalyst has access to the ciphertext of several messages,
and to the plaintext of those messages.

2In a chosen-plaintext attack, the cryptanalyst not only has access to the ciphertext and associ-
ated plaintext for several messages, but he also chooses the plaintext that gets encrypted

3As in [Mat93]
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• In order to carry out the attack, the cryptanalyst guesses the value of the
bits of K(8) involved in the approximation, denoted k(8), and use this value
to check if the linear approximation holds or not. For every possible k(8), a
counter evaluates the number of times the expression holds, using every plain-
text/ciphertext pairs at disposal. To conclude the attack, the cryptanalyst
supposes that the counter that displays the largest (or the smallest) value
corresponds to the right round key bits. This supposition, called Wrong-key
randomization hypothesis, says that when the guessed value k(8) is wrong, the
linear expression has no more particular reason to hold with a probability
p 6= 1

2 .

Assumption 1. Wrong-key randomization hypothesis4 For any linear
expression L operating on n rounds for which

∣∣∣∣Pr

[
L = 0 | K(1) = k(1), . . . ,K(n) = k(n)

]
− 1

2

∣∣∣∣

is large for virtually all values k(1), . . . , k(n) of the round keys, the following is
true: for virtually all possible full keys (k(1), . . . , k(n)) and for all estimates k̂
of the last round key,

∣∣Pr [L = 0 | K = kr]− 1
2

∣∣
∣∣∣Pr

[
L = 0 | K = k̂

]
− 1

2

∣∣∣
À 1 ∀k̂ 6= kr

where kr is the right key.

1.2 Improvements

In a second paper [Mat94a] published at Crypto ’94, Matsui proposes some improve-
ments to linear cryptanalysis. He introduces a new linear expression on the central
n − 2 rounds of DES and proposes a way to classify round keys candidates during
the attack. He manages to recover 26 round key bits, using 243 plaintext/ciphertext
couples, with a probability of success of 85%. The remaining 30 bits are recovered
with an exhaustive search. The attack improvement is due to the final ranking of
the round key candidates. However, Matsui proposes no proof on the optimality
of its method. In a paper [JV03] published at FSE ’03, Pascal Junod and Serge
Vaudenay propose an optimal way to classify the round key candidates. The use
of Hypothesis tests and of the Neyman-Pearson lemma allow them to build an op-
timal distinguisher, which is a solution to the problem of candidates classification.
They manage to achieve a rate of success of 85% when approximatively 242.5 plain-
text/ciphertext couples are at disposal.

4As it appears in [Jun01], first appeared in [HKM95]
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Figure 1: Notations on a n rounds Feistel scheme

2 Generalizing linear cryptanalysis

2.1 Previous work

Since the introduction of linear cryptanalysis by Matsui, some generalizations have
been proposed. Carlos Harpes, Gerhard G. Kramer and James L. Massey, in a pa-
per [HKM95] published at Eurocrypt ’95, propose for example to generalize Matsui’s
linear expression with threefold sums. A threefold sum on one round of a cipher is
the sum of three terms: a binary function of the round input, a binary function of
the round output and a binary function of the round key. These functions are not
necessarily simple bits xor anymore. One of the main problems solved in this paper
concern the generalization of the piling-up lemma to their theory. Despite the fact
that binary function allow more control over the computation of the correlation of
plaintext bits, ciphertext bits and key bits, threefold sums still compare one bit of
text to one bit of key.

Another work by Matthew G. Parker [Par03] considers linear approximations over
spaces of dimension four instead of two. Although no method to obtain linear
approximations on several rounds of the cipher given linear expressions on the in-
dividual rounds is given (which would be a generalization of the piling-up lemma),

ix



significantly higher biases on several S-boxes are found.

Carlo Harpes also proposed some significant modifications on linear cryptanalysis
[HM97]. The basic idea is to use partition-pair, i.e. a partition of the set of inputs
of the first round of the cipher (the input partition), and a partition the set of
inputs of the last round of the cipher (the output partition). More precisely, Harpes
defines a partition A of a input (or output) set X to be a set of non-empty blocks
A0, . . . , Aa−1 such that A = {A0, . . . , Aa−1}. The basic attack is based on the
property that, taking plaintexts in a fixed block of the input partition, the random
variable representing the input of the last round is not uniformly distributed over
all possible output blocks and this, for almost all keys.

2.2 Our proposition

We will thus try to generalize linear cryptanalysis by generalizing linear expression
used to approximate some rounds of the cipher during the attack. Linear expressions
will be replaced by transition matrices5. We describe here the content of each chapter
of this work:

• In chapter I we realize a study on distinguishers, useful for the final classifica-
tion of round key candidates. We study two types of distinguishers. The first
should be able to make the distinction between two probability distributions of
a single random variable. The second one makes the distinction between two
distributions of a couple of random variables, defined by a transition matrix.
In both cases we will recall some previous results (description of the distin-
guisher, Neyman-Pearson lemma, computation of the best advantage) before
we introduce some new results (given a certain error probability, we provide
an estimate of the necessary number of questions of the distinguisher to a gen-
erator implementing one of the two distributions before it can take a decision).
In the second case, the obtained results will allow us to generalize the measure∣∣p− 1

2

∣∣ of a linear expression expression efficiency, in order to compute the
effectiveness of a transition matrix.

• In chapter II, we provide a toolbox gathering all necessary tools for generalized
linear cryptanalysis. We introduce a linear function on finite fields, called the
trace, which will allow us to define a certain type of transition matrices (and
of bias matrices). Some properties of these matrices are introduced. This
chapter also introduces a generalization of the piling-up lemma which should
be applicable to our theory. It will allow to find a good approximation (i.e. a
good transition matrix) on several rounds of a cipher, given the approximations
of each single round (i.e. the transition matrices of each single round).

• In chapter III, we apply the theory to a simple cipher. Two cases are consid-
ered, whether to transition matrices used are 2 × 2 (we will see that this is

5This terminology seems to appear in [MG00] for the first time in the world of cryptography.
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equivalent to linear cryptanalysis) or 4× 4.

• In the last chapter, we summarize some of the main results obtained during
this work, give starting points for further researches and conclude.

xi



Chapter I

A study on distinguishers

1 Notation and convention

Random variables X,Y, . . . are denoted by capital letters, while realizations x ∈
X , y ∈ Y, . . . of random variables are denoted by small letters. The fact for a ran-
dom variable X to follow a distribution D is denoted X ← D, whilst its probability
function is denoted by PrX←D [X = x] or PrD [x]. The fact that a sequence of iid
random variables X1, . . . , Xn is such that every random variable Xi of that sequence
follows a distribution D will be denoted Xn ← Dn. Similarly, a sequence of realiza-
tions x1, x2, . . . , xn will be denoted xn.

We call support of a distribution D the set SuppD of all x ∈ X s.t. PrD [x] 6= 0.

2 Distinguishability of two distributions of probabilities

2.1 The Problem

We consider a sequence of n iid random variables X1, X2, . . . , Xn following a distri-
bution D̂, taking values in a set Z. We wonder whether D̂ = D0 or D̂ = D1 (where
D1 is referred to an ”ideal distribution”).

2.2 Recall on distinguishers

A distinguisher is an algorithm which gets a realization of the sequence from a
Source and which ultimately outputs 0 or 1. In our case, we can query the Source
and receive a realization of the random variable X in return. This variable follows
either the distribution D0 or D1 (see Figure I.1).
A distinguisher is usually limited to n queries to the Oracle. Its capacity to dis-
tinguish a distribution from another is given by its Advantage, which is a distance
between the probabilities that the distinguisher outputs 0 given D̂ = D0 or D̂ = D1.

1



Parameters: a complexity n, an acceptance region A
Input: a random Source S which generates realizations of a random variable X following a
distribution D̂

1: for i = 1, . . . , n do

2: Receive xi ∈ Z from the Source

3: end for

4: if (x1, x2, . . . , xn) ∈ A
5: Output 0

6: else

7: Output 1

8: end if

Algorithm 1: Modeling of a distinguisher limited to n questions

We consider the distinguisher described by Algorithm 1. We see that this distin-
guisher depends on a certain set A ∈ Zn.
By choosing this set judiciously, we can maximize the advantage defined by

AdvnA =
∣∣PrDn

0
[A]− PrDn

1
[A]
∣∣ . (I.1)

Such a distinguisher can make two different types of mistakes. It can either output
1 when D̂ = D0 or output 0 when D̂ = D1. We denote the probability of these two
events by

α = PrDn
0

[
A
]

(I.2)

and
β = PrDn

1
[A] . (I.3)

With these notations, the advantage is such that:

AdvnA = |1− 2Pe| , (I.4)

where Pe = 1
2(α + β) is overall probability of error. This can be seen as Bayesian

approach, where one assigns prior probabilities to two hypothesis (see [Jun03a]). As

x1, . . . , xn ∈ Z
distribution D0 or D1

0 or 1

S

A

Figure I.1: A distinguisher between two distributions
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for now we can consider that Pe ≤ 1
2 , otherwise we would turn A in A to get an

overall probability of error less than 1
2 . Thus

AdvnA = 1− 2Pe . (I.5)

Thus maximizing AdvnA is equivalent to minimizing the overall probability of error
Pe.

2.3 Maximizing the advantage of the distinguisher

We are going to derive the set A that minimizes the overall probability of error (i.e.
maximize the advantage of the distinguisher). The construction we make can also
be considered like a proof of the Neyman-Pearson lemma (see [Jun03a] for more
details). We have:

Pe =
1

2


∑

xn∈A

PrDn
0
[xn] +

∑

xn∈A

PrDn
1
[xn]




=
1

2

(
1−

∑

xn∈A

PrDn
0
[xn] +

∑

xn∈A

PrDn
1
[xn]

)

=
1

2
+

1

2

∑

xn∈A

(
PrDn

1
[xn]− PrDn

0
[xn]

)
.

Thus minimizing Pe is equivalent to minimizing the sum of the last equation. It
is minimal when A consists of all xn such that the difference in the parenthesis is
negative (see [Vau03]). The set that minimizes the overall probability of error is
thus:

A =

{
xn ∈ Zn :

PrDn
0
[xn]

PrDn
1
[xn]

≥ 1

}
, (I.6)

with the convention that p
0 = +∞ for p > 0. Note that this set is well defined, as

the 0
0 case can be ignored.

This set defines a so called decision function δ : Zn → {0, 1} such that

∀xn ∈ Zn δ(xn) = 0⇔ xn ∈ A .

The set A is called the region of acceptance of δ.

We summarize these results in the following definition.

Definition 1. (Optimal Binary Hypothesis Test). The optimal decision rule
to test D̂ = D0 against D̂ = D1 that minimizes the overall probability of error (i.e.
maximizes the advantage of the distinguisher of Algorithm 1) is the following:

3



δopt =

{
0 (i.e. accept D̂ = D0) if LR(x

n) ≥ 1

1 (i.e. accept D̂ = D1) if LR(x
n) < 1

(I.7)

where LR is the likelihood ratio,

LR(xn) =
PrDn

0
[xn]

PrDn
1
[xn]

, (I.8)

with the convention that p
0 = +∞ for p > 0 (the 0

0 case can be ignored).

Intuitively, if we suppose that for some query we receive a value x that could not
be generated by distribution D0 (i.e. PrD0 [x] = 0) our distinguisher should choose
at the end D̂ = D1. We see that in such a situation, LR(xn) = 0 and thus our
distinguisher will make the right choice. Note that this result corresponds to the
Neyman-Pearson lemma (see [JV03]).

2.4 On the optimality of the distinguisher

The best advantage of the distinguisher described in Algorithm 1 is reached when
A is defined by equation (I.6). Unfortunately such a distinguisher can hardly be
implemented as n grows. In order to take a decision it must keep in memory all the
results of the n queries. We are going to optimize (in the sense of decreasing the
needed memory, while keeping the same advantage) the distinguisher by using the
fact that X1, . . . , Xn are i.i.d. and by the use of |Z| counters, each one counting
the number of occurrences of a certain symbol of Z in the sequence xn. Moreover,
we will show that the best advantage of such a distinguisher is the same as the one
described in Algorithm 1.

If we go back the definition of the likelihood ratio, we have:

LR(xn) =
PrDn

0
[xn]

PrDn
1
[xn]

=
n∏

i=1

PrD0 [xi]

PrD1 [xi]

=
∏

a∈Z
s.t. N(a|xn)>0

(
PrD0 [a]

PrD1 [a]

)N(a|xn)

where N(a|xn) is the number of times the symbol a ∈ Z occurs in the sequence
xn ∈ Zn.
We thus see that the optimal decision rule is perfectly defined by |Z| counters, each
one counting the number of occurrences of a particular symbol of Z in the sequence
x1, x2, . . . , xn. Taking the logarithm of the likelihood ratio, we can define a new
decision rule δ̃ (i.e. a new region of acceptance Ã) based on these counters:

4



Parameters: a complexity n, an acceptance region Ã
Input: a random Source S which generates realizations of a random variable X following a
distribution D̂

1: Initialize |Z| counters u1, u2, . . . , u|Z|

2: for i = 1, . . . , n do

3: Receive x ∈ Z from the Source

4: Increment ux

5: end for

6: if (u1, u2, . . . , u|Z|) ∈ Ã
7: Output 0

8: else

9: Output 1

10: end if

Algorithm 2: Modeling of a distinguisher limited to n questions, using counters

Definition 2. (Optimal Binary Hypothesis Test Revisited). The optimal
decision rule to test D̂ = D0 against D̂ = D1 that minimizes the overall probability
of error is the following:

δ̃opt =

{
0 (i.e. accept D̂ = D0) if LLR(N(a1|xn), . . . , N(a|Z||xn)) ≥ 0

1 (i.e. accept D̂ = D1) if LLR(N(a1|xn), . . . , N(a|Z||xn)) < 0
(I.9)

where N(ai|xn) is the number of times the symbol ai occurs in the sequence xn ∈ Zn

and where LLR is the logarithmic likelihood ratio,

LLR(N(a1|xn), . . . , N(a|Z||xn)) =
∑

a∈Z
s.t. N(a|xn)>0

N(a|xn) log PrD0 [a]

PrD1 [a]
, (I.10)

with the convention that log 0
p = −∞ and log p

0 = +∞ for p > 0 (Note that the log 0
0

case can be ignored).

From this consideration, it is now possible to derive the best distinguisher of two
distributions (see Algorithm 2).
As the decision rule used in the new distinguisher is equivalent to the one used in
the previous distinguisher, both offer the same advantage. In the next paragraph
we will compute its exact value.

2.5 Computation of the Advantage of the Best Distinguisher

LetMn andM∗n be the vectors defined by

[Mn](x1,x2,...,xn) = PrDn
0
[x1, x2, . . . , xn] and [M∗n](x1,x2,...,xn) = PrDn

1
[x1, x2, . . . , xn] .

5



This corresponds to n-wise distribution matrices in the decorrelation theory (see
[Vau03]) in a simplified case as we have no input here, only outputs xi.

The probability that the distinguisher outputs 0 when X follows distribution D0

(resp. D1) is
∑

xn∈A[Mn]xn (resp.
∑

xn∈A[M∗n]xn). The advantage is thus

∑

xn∈A

([Mn]xn − [M∗n]xn) .

We know that the set A maximizes this sum (as it minimizes its opposite), moreover
this sum is null if it is taken over all possible values of xn. Thus the advantage is

1

2

∑

xn∈Zn

|[Mn]xn − [M∗n]xn | ,

which can be written down as

Advnδopt
=

1

2
‖ Mn −M∗n ‖1 ,

where the norm ‖ · ‖1 of a vector A is defined by ‖ A ‖1=
∑

i |Ai|.

2.6 Necessary number of queries for close distributions

In this section we try to anticipate the number of queries that the algorithm we have
presented needs in order to distinguish D0 from D1, given a certain error probability
Pe.

In the first part we will see how the LLR can be approximated by a normal law when
SuppD0

= SuppD1
. In the second we compute the approximate number of queries

considering that D1 is the uniform distribution and that both distributions are close
to each other.

Approximation of the LLR by a normal law

We start by introducing a definition which will allow to simplify some of the results
we are going to obtain.

Definition 3. The relative entropy or Kullback Leibler distance1 between two dis-
tributions D0 and D1 is defined as

D(D0 ‖ D1) =
∑

x∈Z

PrD0 [x] log
PrD0 [x]

PrD1 [x]
,

with the convention that 0 log 0
p = 0 and p log p

0 = +∞ for p > 0.

1See [CT91] for more details
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The following Theorem provides an important property of the Kullback Leibler
distance (see [CT91] for a proof).

Theorem 1. Considering the two distributions D0 and D1 we have

D(D0 ‖ D1) ≥ 0

with equality if and only if D0 = D1.

Still using the conventions proposed in Section 1 and in Definition 3, and considering
that 0 log p = 0 for p ≥ 0, we can write the LLR as:

LLR(N(a1|xn), . . . , N(a|Z||xn)) =
∑

a∈Z

N(a|xn) log PrD0 [a]

PrD1 [a]

=
∑

a∈Z

n∑

i=1

1xi=a log
PrD0 [a]

PrD1 [a]

=
n∑

i=1

∑

a∈Z

1xi=a log
PrD0 [a]

PrD1 [a]
.

As the n queries are independent, we can consider the n random variables

∑

a∈Z

1xi=a log
PrD0 [a]

PrD1 [a]
, 1 ≤ i ≤ n

to be independent. The Central Limit Theorem then states that the LLR converges
towards a normal distribution of mean E [LLR]j and of variance Var [LLR]j , where

j is equal to 0 (resp. 1) when D̂ = D0 (resp. D̂ = D1).

The mean (depending on the distribution) is

E [LLR]j =
n∑

i=1

∑

a∈Z

E1xi=a
[log]

PrD0 [a]

PrD1 [a]

= n
∑

a∈Z

PrDj [a] log
PrD0 [a]

PrD1 [a]
.

Using the relative entropy we obtain

E [LLR]0 = nD(D0 ‖ D1) (I.11)

and

E [LLR]1 = −nD(D1 ‖ D0) . (I.12)
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Before going further we should note that these results hold because we supposed
that SuppD0

= SuppD1
. Suppose now that this is not the case. Some a ∈ Z such

that PrD0 [a] = 0 and PrD1 [a] 6= 0 can occur. We then have D(D1 ‖ D0) = +∞ and
thus E [LLR]1 = −∞. In the same situation, the value of E [LLR]0 is finite. It is
obvious that in such a situation the Central Limit Theorem cannot be used and this
is why we have to suppose that SuppD0

= SuppD1
.

As the n queries are independent we also have:

Var [LLR]0 = nVar

[∑

a∈Z

1x=a log
PrD0 [a]

PrD1 [a]

]

= n


E


∑

a∈Z

∑

a′∈Z

1x=a1x=a′ log
PrD0 [a]

PrD1 [a]
log

PrD0 [a
′]

PrD1 [a
′]


−D(D0 ‖ D1)

2




= n

(
E

[∑

a∈Z

1x=a

(
log

PrD0 [a]

PrD1 [a]

)2
]
−D(D0 ‖ D1)

2

)

= n

(∑

a∈Z

PrD0 [a]

(
log

PrD0 [a]

PrD1 [a]

)2

−D(D0 ‖ D1)
2

)
.

A similar computation leads to:

Var [LLR]1 = n

(∑

a∈Z

PrD1 [a]

(
log

PrD0 [a]

PrD1 [a]

)2

−D(D1 ‖ D0)
2

)
.

We summarize these results in the following proposition.

Proposition 1. Considering that X1, . . . , Xn are i.i.d. and that D0 and D1 have
the same support, the Central Limit Theorem states that the LLR converges towards
a normal distribution of mean

E [LLR]0 = nD(D0 ‖ D1) ≥ 0 (I.13)

or

E [LLR]1 = −nD(D1 ‖ D0) ≤ 0 (I.14)

and of variance

Var [LLR]0 = n

(∑

a∈Z

PrD0 [a]

(
log

PrD0 [a]

PrD1 [a]

)2

−D(D0 ‖ D1)
2

)
(I.15)

or
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Var [LLR]1 = n

(∑

a∈Z

PrD1 [a]

(
log

PrD0 [a]

PrD1 [a]

)2

−D(D1 ‖ D0)
2

)
. (I.16)

whether D̂ = D0 or D̂ = D1.

When we say that D0 and D1 can be distinguished, we mean that the distinguisher
takes the right decision with a small probability of error Pe. Now that we have shown
that the LLR can be approximated by a normal law, we can extend this concept.

Definition 4. We will say that the two normal distributions given in Proposition 1
can be distinguished with a probability of error Pe when the underlying two distribu-
tions D0 and D1 can be distinguished with a probability of error Pe.

Computation of the number of queries

In the preceeding paragraph, we have considered that SuppD0
= SuppD1

. Now, we
also consider that both distributions are very close to each other and that D1 is the
uniform distribution.

Approximation 1. Considering that D0 is close to the uniform distribution D1, we
can write

∀a ∈ Z : PrD0 [a] =
1

|Z| + εa with |εa| ¿
1

|Z| (I.17)

We can now simplify the results obtained in Proposition 1.

Theorem 2. Under the hypothesis of Proposition 1 and of Approximation 1 we
have, at order two :

E [LLR]0 ≈ −E [LLR]1 ≈
1

2
n |Z|

∑

a∈Z

ε2a (I.18)

and
Var [LLR]0 ≈ Var [LLR]1 ≈ n |Z|

∑

a∈Z

ε2a . (I.19)

Proof. If we make use of Proposition 1 and of Approximation 1, we have:

E [LLR]0 = n
∑

a∈Z

(
1

|Z| + εa

)
log (1 + |Z| εa)

E [LLR]1 = n
∑

a∈Z

1

|Z| log (1 + |Z| εa)

and

9



Var [LLR]0 = n

(∑

a∈Z

(
1

|Z| + εa

)
(log (1 + |Z| εa))2

−
(∑

a∈Z

(
1

|Z| + εa

)
log (1 + |Z| εa)

)2



Var [LLR]1 = n


∑

a∈Z

1

|Z| (log (1 + |Z| εa))
2 −

(∑

a∈Z

1

|Z| log (1 + |Z| εa)
)2

 .

If we develop these four results in Taylor series at order 2, we obtain the announced
results.

In the rest of this paragraph, we use the following notation:

µ =
1

2
n |Z|

∑

a∈Z

ε2a

σ2 = n |Z|
∑

a∈Z

ε2a .

We can finally give the expected Theorem, that is the one that gives the number of
necessary questions to distinguish D0 and D1 with a specific error probability.

Theorem 3. If we assume that we are under the hypothesis of Proposition 1 and of
Approximation 1 and that the number of queries n of the distinguisher is

n =
d

|Z|
∑

a∈Z

ε2a
(I.20)

for some d, then the probability of error Pe is

Pe = 1− Φ

(√
d

2

)
, (I.21)

where Φ is the distribution function of a standard normal distribution, i.e.

Φ(x) =

∫ x

−∞

1√
2π
e−

1
2
z2dz .

Proof. Let d be such that

µ =

√
d

2
σ .
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σ σ

α β

−µ µ

Figure I.2: The two normal distributions and the probabilities of error

We have

µ =

√
d

2
σ ⇔ µ2 =

d

4
σ2

⇔ 1

4
n2 |Z|2

(∑

a∈Z

ε2a

)2

=
d

4
n |Z|

∑

a∈Z

ε2a

⇔ n =
d

|Z|
∑

a∈Z

ε2a
.

We now compute the probability of error. The two normal distributions N (µ, σ)
and N (−µ, σ) can be distinguished with a probability of error (see Figure I.2)
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Pe =
1

2
(α+ β)

=
1

2

(∫ 0

−∞

1

σ
√
2π
e−

(x−µ)2

2σ2 dx+

∫ +∞

0

1

σ
√
2π
e−

(x+µ)2

2σ2 dx

)

=
1

2

(∫ −µ/σ

−∞

1√
2π
e−

z2

2 dz +

∫ +∞

µ/σ

1√
2π
e−

z2

2 dz

)

=
1

2

(
1−

∫ µ/σ

−µ/σ

1√
2π
e−

z2

2 dz

)

=
1

2

(
1− 2

∫ µ/σ

0

1√
2π
e−

z2

2 dz

)

=
1

2

(
1− 2

(∫ µ/σ

−∞

1√
2π
e−

z2

2 dz − 1

2

))

= 1− Φ
(µ
σ

)

= 1− Φ

(√
d

2

)

For instance, with d = 1, a distinguisher that asks
1

|Z|∑a∈Z ε
2
a

queries makes an

error with a probability Pe = 1− Φ(1
2) ≈ 0.3085.

Experimental results

We provide here some experimental results. The program we use to test the accu-
racy of Theorem 3 works in the following way: it chooses at random a distribution
of probability D0. Then, for each allowed number of questions n, it computes d and
the resulting theoretical probability of error Pe,th using equations (I.20) and (I.21).
Then it computes the experimental probability of Pe,exp by querying a Source im-
plementing D0 and a Source implementing D1 (so that it can compute α and β
experimentally). The results of these experiments are shown on Figure I.3 and I.4,
depending on the cardinality of Z.
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Figure I.3: Accuracy of Theorem 3 when |Z| = 2
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Figure I.4: Accuracy of Theorem 3 when |Z| = 4

The program we used was written in C, the random generator we used was the
standard C generator. For each graph, the experimental curve was computed on the
base of 200 iterations, each one simulating the distinguisher allowed to n queries,
for n = {1, 2, 3, . . . , 3000}.
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2.7 Necessary number of queries for distant distributions

We have seen that it is possible to compute an approximation of the number of
queries the distinguisher needs in the case where D0 is close to D1. We now consider
that the two distributions are distant.

Definition 5. We consider that D0 and D1 are distant when SuppD0
6= SuppD1

and
when one of the two the following equations are verified:

∀a ∈ SuppD0
: PrD0 [a] ≥ PrD1 [a]

∀a ∈ SuppD1
: PrD1 [a] ≥ PrD0 [a]

We now consider that SuppD0
6= SuppD1

= Z. To simplify the study we also consider
that D1 is the uniform distribution, so that the fact that these two distributions are
distant implies that

∀a ∈ SuppD0
: PrD0 [a] ≥ PrD1 [a] =

1

q
.

In such a situation, supposing that the generator implements D1, it is possible that
the distinguisher receives a sample a ∈ Z such that PrD0 [a] = 0. Regardless what
it received before, it can then choose D̂ = D1 with no doubt. In other terms, if the
distinguisher receives a value a in the symmetric difference

SuppD0
4 SuppD1

= (SuppD0
∪ SuppD1

)− (SuppD0
∩ SuppD1

)

= (SuppD0
∪ Z)− (SuppD0

∩ Z)
= Z − SuppD0

= SuppD0

it can take its decision. Thus the number of queries it needs can be considered to
approximatively equal to the expected number of questions before receiving a value
of the symmetric difference, when the distinguisher implements D1. One can see
that once such a value is received, the error probability Pe is 0.

Theorem 4. If we assume that D0 is distant from the uniform distribution D1 and
that the distinguisher asks n questions, then the probability of error is such that

Pe ≤
(∣∣SuppD0

∣∣
|Z|

)n

(I.22)

Proof. We have defined the probability of error to be

Pe =
1

2
(α+ β) .
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We have:

α = PrD0

[
A | ∀i PrD0 [xi]

PrD1 [xi]
≥ 1

]
PrD0

[
∀iPrD0 [xi]

PrD1 [xi]
≥ 1

]

+ PrD0

[
A | ∃i PrD0 [xi]

PrD1 [xi]
< 1

]
PrD0

[
∃iPrD0 [xi]

PrD1 [xi]
< 1

]
.

The definition of A for the best distinguisher implies that

PrD0

[
A | ∀i PrD0 [xi]

PrD1 [xi]
≥ 1

]
= 0 .

As the two distributions are distant, we also have

PrD0

[
∃iPrD0 [xi]

PrD1 [xi]
< 1

]
= 0 ,

so that α = 0. On the other hand, we have

β = PrD1

[
A | ∀i xi ∈ SuppD0

]
PrD1

[
∀i xi ∈ SuppD0

]

+ PrD1

[
A | ∃i xi /∈ SuppD0

]
PrD1

[
∃i xi /∈ SuppD0

]
.

As the distinguisher makes no mistake when it receives a value in SuppD0
, we know

that
PrD1

[
A | ∃i xi /∈ SuppD0

]
= 0 .

We thus have

β ≤ PrD1

[
∀i xi ∈ SuppD0

]

=

(∣∣SuppD0

∣∣
|Z|

)n

which concludes the proof.

To complete this section, we can note that if

1

|Z|
∑

a∈SuppD0
∩SuppD1

ε2a
¿ n4 ,

the effect of the fact that SuppD0
∩SuppD1

6= ∅ can be neglected. Although this may
happen only when Z is large enough, we can sum on SuppD0

∩ SuppD1
instead of Z,

so that Theorem 3 is still valid.
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3 Best distinguisher of a Couple of Random Variables

3.1 The problem

We consider a sequence of n iid pairs of random variables (Xi, Yi) 1 ≤ i ≤ n, each
pair taking values in the set Z × Z (note that Xi and Yi are dependent). We
will concentrate on known plaintext attacks for which X1, . . . , Xn are i.i.d. and
uniformly distributed. When the distribution of the random variable X is uniform,
the distribution of the random variable Y is defined by a so calledMatrix of transition
T such that

Tx,y = Pr [Y = y|X = x] .

A random Generator implements a matrix of transition T̂ which is either T or
T ∗ (the ideal transition matrix). By querying it, we want to discover which one it
implements. Like for the previous section, we will have to find the best distinguisher
for this task (see Figure I.5).

y1, y2, . . . , yn

x1, x2, . . . , xn

Transition matrix T or T ∗

0 or 1

G

A

Figure I.5: A non-adaptative distinguisher between two transition matrices

3.2 Notation and convention

In this section we will focus on the distribution of couples (X,Y ) taking values in
Z2. We will consider such a couple like a random variable Z = (X,Y ). Therefore,
n realizations will be denoted zi = (xi, yi) for 1 ≤ i ≤ n.
We call support of a transition matrix T the subset SuppT of Z × Z such that for
all (x, y):

(x, y) ∈ SuppT ⇔ Tx,y 6= 0 .

3.3 The Best Decision Rule

In the previous section, we managed to find a distinguisher whose set of acceptance
was dependent only on counters. In this section we are going to follow the same
approach. In a first phase, we will maximize the advantage of our distinguisher in
order to derive a set of acceptance A based on the n realizations of the random
variable (X,Y ), where X is uniformly distributed. In a second phase, we will use
this set to find a new set of acceptance Ã based on |Z|2 counters.
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Finding a set of acceptance based on realizations

We consider the distinguisher described by Algorithm 3. We want to maximize its
advantage given by

AdvnA = |PrT [A]− PrT ∗ [A]| . (I.23)

This distinguisher can make two types of mistake. It can either output 1 when
T̂ = T or output 0 when T̂ = T ∗. We denote the probability of these two events by

α = PrT

[
A
]

(I.24)

and
β = PrT ∗ [A] . (I.25)

As in the previous section, we can write the advantage using these notation in the
following way:

AdvnA = 1− 2Pe (I.26)

where Pe is the overall probability of error, considered to be less than 1
2 , and such

that Pe =
1
2(α+ β).

Still following the methodology used in the previous section, we can derive the set
A ⊂ (Z × Z)n maximizing the advantage. We find

A =

{
zn ∈ (Z × Z)n :

PrT [zn]

PrT ∗ [zn]
≥ 1

}
, (I.27)

with the convention that p
0 = +∞ for p > 0. Note that the 0

0 can be ignored.

We can express this result in function of the transition matrix T and T ∗. Considering
that the Xi’s are uniformly distributed, we have:

PrT [zn]

PrT ∗ [zn]
=

PrT [(Xi, Yi) = (xi, yi) 1 ≤ i ≤ n]
PrT ∗ [(Xi, Yi) = (xi, yi) 1 ≤ i ≤ n]

=
n∏

i=1

PrT [(Xi, Yi) = (xi, yi)]

PrT ∗ [(Xi, Yi) = (xi, yi)]

=
n∏

i=1

Txi,yi
T ∗xi,yi

.

We summarize these results in the following definition.

Definition 6. (Optimal Binary Hypothesis Test using Transition Matrix).
The optimal decision rule to test T̂ = T against T̂ = T ∗ that minimizes the overall
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Parameters: a complexity n, an acceptance region A
Input: an random Generator G which generates a realization of a random variable Y
according to a realization of X at its input and to a transition matrix T̂ .

1: for i = 1, . . . , n do

2: Pick xi uniformly at random and send it to the Generator G
3: Receive yi ∈ Z
4: end for

5: if ((x1, y1), (x2, y2), . . . , (xn, yn)) ∈ A
6: Output 0

7: else

8: Output 1

9: end if

Algorithm 3: Known plaintext attack based on a set of realizations

probability of error (i.e. maximizes the advantage of the distinguisher of Algorithm
3) is the following:

δopt =

{
0 (i.e. accept T̂ = T ) if LR(zn) ≥ 1

1 (i.e. accept T̂ = T ∗) if LR(zn) < 1
(I.28)

where LR is the likelihood ratio,

LR(zn) =
n∏

i=1

Txi,yi
T ∗xi,yi

, (I.29)

with the convention that p
0 = +∞ for p > 0 (the 0

0 case can be ignored).

Finding a set of acceptance based on counters

Like in the previous section, the distinguisher we just computed can not be imple-
mented as it uses a huge amount of memory. We will see that only counters are
necessary in order to derive a distinguisher with the same advantage.

If we reconsider the definition of the LR, we have:

LR(zn) =

n∏

i=1

PrT [(Xi, Yi) = (xi, yi)]

PrT ∗ [(Xi, Yi) = (xi, yi)]

=
∏

a,b∈Z
s.t. N((a,b)|zn)>0

(
PrT [(X,Y ) = (a, b)]

PrT ∗ [(X,Y ) = (a, b)]

)N((a,b)|(x1,y1)...(xn,yn))

,
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Parameters: a complexity n, an acceptance region Ã
Input: a random Generator G which generates a realization of a random variable Y accord-
ing to a realization of X at its input and to a transition matrix T̂ .

1: Initialize a matrix U of |Z| × |Z| counters
2: for i = 1, . . . , n do

3: Pick a ∈ Z uniformly at random and send it to the Generator G
4: Receive b ∈ Z and increment [U ]ab
5: end for

6: if U ∈ Ã
7: Output 0

8: else

9: Output 1

10: end if

Algorithm 4: Known plaintext attack based on a set of counters

where N((a, b)|(x1, y1) . . . (xn, yn)) is the number of times the couple (a, b) ∈ Z2

occurs in the sequence (x1, y1) . . . (xn, yn). The likelihood ratio is thus uniquely
defined by |Z|2 counters. Let U be the |Z| × |Z| matrix such that

[U ]ab = N((a, b)|(x1, y1), (x2, y2), . . . , (xn, yn)) .

Like in the previous section, we can take the logarithm of the likelihood ratio and
consider it as a function of the counters. We denote it LLR, such that

LLR(U) =
∑

a,b∈Z
s.t. N((a,b)|zn)>0

N((a, b)|zn) log PrT [(X,Y ) = (a, b)]

PrT ∗ [(X,Y ) = (a, b)]

=
∑

a,b∈Z
s.t. N((a,b)|zn)>0

N((a, b)|zn) log Ta,b
T ∗a,b

,

with the convention that log 0
p = −∞ and log p

0 = +∞ for p > 0. We note that the

log 0
0 case still never occurs here as the sum is taken over (a, b) couples such that

N((a, b)|zn) > 0. We can define a new decision rule δ̃ (i.e. a new set of acceptance Ã)
based on the counters. The distinguisher associated with this new set Ã is described
by Algorithm 4. We summarize these results in the following definition.

Definition 7. (Optimal Binary Hypothesis Test using Transition Matrix
Revisited). The optimal decision rule to test T̂ = T against T̂ = T ∗ that minimizes
the overall probability of error is the following:

δ̃opt =

{
0 (i.e. accept T̂ = T ) if LLR(U) ≥ 0

1 (i.e. accept T̂ = T ∗) if LLR(U) < 0
(I.30)
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where U is the |Z|× |Z| matrix such that [U ]ab = N((a, b)|zn) and where LLR is the
logarithmic likelihood ratio,

LLR(U) =
∑

a,b∈Z
s.t. N((a,b)|zn)>0

N((a, b)|zn) log Ta,b
T ∗a,b

, (I.31)

with the convention that log 0
p = −∞ and log p

0 = +∞ for p > 0 (the log 0
0 case can

be ignored).

As in the previous case, it is clear that if the optimal distinguisher receives a couple
(x, y) such that Tx,y = 0, it will eventually make the right choice (i.e. choose
T̂ = T ∗).

3.4 Computation of the advantage of the best distinguisher

The probability that the distinguisher outputs 0 when T̂ = T (resp. T̂ = T ∗) is∑
(a,b)∈A PrT [zn] (resp.

∑
(a,b)∈A PrT ∗ [zn]). The advantage is thus

∣∣∣∣∣
∑

zn∈A

(PrT [zn]− PrT ∗ [zn])

∣∣∣∣∣ .

We know that this sum is maximum when it is taken over A and that it is null when
it is taken over all possible values. Thus the advantage is:

Advnδopt
=

1

2

∑

zn∈(Z×Z)n

|PrT [zn]− PrT ∗ [zn]|

If Tn is the |Zn| × |Zn| matrix such that

[Tn](x1,x2,...,xn)(y1,y2,...,yn) =
n∏

i=1

Txiyi ,

we can write down the advantage as:

Advnδopt
=

1

2 |Z|n ‖ Tn − T
∗
n ‖1 , (I.32)

where the ‖ · ‖1 norm of a matrix A is defined by ‖ A ‖1=
∑

i,j |Ai,j |.

3.5 Necessary number of queries for close distributions

Like in the previous section, we try to anticipate the number of queries that our dis-
tinguisher needs in order to make the distinction between T and T ∗, given a certain
error probability Pe.
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We follow an identical approach. We will approximate the LLR by a normal law in
the case where SuppT = SuppT ∗ . Then we compute the number of queries supposing
that T is close to T ∗.

Approximation of the LLR by a normal law

We slightly modify the definition of the relative entropy so that it fits to the tran-
sition matrices we are manipulating.

Definition 8. The relative entropy between two transition matrices T and T ∗ is
defined as

D(T ‖ T ∗) =
∑

a,b∈Z

Ta,b log
Ta,b
T ∗a,b

(I.33)

with the convention that 0 log 0
p = 0 and p log p

0 = +∞ for p > 0.

Using just the same conventions as in the previous section, we can write the LLR
in the following way:

LLR(U) =
∑

a,b∈Z

N((a, b)|zn) log Ta,b
T ∗a,b

=
∑

a,b∈Z

n∑

i=1

1(a,b)=(xi,yi) log
Ta,b
T ∗a,b

=
n∑

i=1

∑

a,b∈

1(a,b)=(xi,yi) log
Ta,b
T ∗a,b

.

As the n queries are independent, we can consider that the n random variables

∑

a,b∈Z

1(a,b)=(xi,yi) log
Ta,b
T ∗a,b

, 1 ≤ i ≤ n

are independent. The Central Limit Theorem then states that the LLR approaches
a normal distribution of mean E [LLR]j and of variance Var [LLR]j , where j is equal

to 0 (resp. 1) when T̂ = T (resp. T̂ = T ∗).

The mean (depending on the distribution) is

E [LLR]j =
n∑

i=1

∑

a,b∈Z

E
[
1(a,b)=(xi,yi)

]
log

Ta,b
T ∗a,b

,

which gives

E [LLR] =
n

|Z|D(T ‖ T
∗) (I.34)
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and

E [LLR]∗ = − n

|Z|D(T
∗ ‖ T ) . (I.35)

As the n queries are independent we also have:

Var [LLR] = nVar


 ∑

a,b∈Z

1(a,b)=(x,y) log
Ta,b
T ∗a,b




= n

(
E


 ∑

a,b∈Z

∑

a′,b′∈Z

1(a,b)=(x,y)1(a′,b′)=(x,y) log
Ta,b
T ∗a,b

log
Ta′,b′

T ∗a′,b′




− 1

|Z|2
D(T ‖ T ∗)2

)

= n


E


 ∑

a,b∈Z

1(a,b)=(x,y)

(
log

Ta,b
T ∗a,b

)2

− 1

|Z|2
D(T ‖ T ∗)2




=
n

|Z|


∑

a,b∈Z

Ta,b

(
log

Ta,b
T ∗a,b

)2

− 1

|Z|D(T ‖ T
∗)2


 .

A similar computation leads to:

Var [LLR]∗ =
n

|Z|


∑

a,b∈Z

T ∗a,b

(
log

Ta,b
T ∗a,b

)2

− 1

|Z|D(T
∗ ‖ T )2


 .

We summarize these results in the following proposition.

Proposition 2. Considering that the n queries to the Oracle are independent and
that T and T ∗ have the same support, the Central Limit Theorem states that the
LLR approaches a normal distribution of mean

E [LLR] =
n

|Z|D(T ‖ T
∗) ≥ 0 (I.36)

or

E [LLR]∗ = − n

|Z|D(T
∗ ‖ T ) ≤ 0 , (I.37)

and of variance

Var [LLR] =
n

|Z|


∑

a,b∈Z

Ta,b

(
log

Ta,b
T ∗a,b

)2

− 1

|Z|D(T ‖ T
∗)2


 .
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or

Var [LLR]∗ =
n

|Z|


∑

a,b∈Z

T ∗a,b

(
log

Ta,b
T ∗a,b

)2

− 1

|Z|D(T
∗ ‖ T )2


 .

whether T̂ = T or T̂ = T ∗.

Computation of the number of queries

Until now, we have only considered that SuppT = SuppT ∗ . Now, we also consider
that T and T ∗ are close to each other and that T ∗ is an ideal transition matrix where
all entries are equal to 1

|Z| .

Approximation 2. Considering that T is close to T ∗, we can write

∀a, b ∈ Z : Ta,b =
1

|Z| + εa,b with εa,b ¿
1

|Z| . (I.38)

The results of Proposition 2 can now be simplified.

Theorem 5. Under the hypothesis of Proposition 2 and of Approximation 2 we
have, at order two:

E [LLR] ≈ −E [LLR]∗ ≈ 1

2
n
∑

a,b∈Z

ε2a,b (I.39)

and
Var [LLR] ≈ Var [LLR]∗ ≈ n

∑

a,b∈Z

ε2a,b . (I.40)

Proof. Using the approximations we have:

E [LLR] =
n

|Z|
∑

a,b∈Z

(
1

|Z| + εa,b

)
log (1 + |Z| εa,b)

E [LLR]∗ =
n

|Z|
∑

a,b∈Z

1

|Z| log (1 + |Z| εa,b)

and

Var [LLR] =
n

|Z|


∑

a,b∈Z

(
1

|Z| + εa,b

)
(log (1 + |Z| εa,b))2

−


∑

a,b∈Z

(
1

|Z| + εa,b

)
log (1 + |Z| εa,b)




2


Var [LLR]∗ =
n

|Z|


∑

a,b∈Z

1

|Z| (log (1 + |Z| εa,b))
2 −


∑

a,b∈Z

1

|Z| log (1 + |Z| εa,b)




2
 .
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If we develop these four results in Taylor series at order 2, we obtain the announced
results.

In the rest of this paragraph we adopt the following notations:

µ =
1

2
n
∑

a,b∈Z

ε2a,b

σ2 = n
∑

a,b∈Z

ε2a,b .

We now give the expected theorem which gives the necessary number of questions
to distinguish T from T ∗ given a specific probability of error.

Theorem 6. If we assume that we are under the hypothesis of Proposition 2 and of
Approximation 2 and that the number of queries n of the distinguisher is

n =
d∑

a,b∈Z

ε2a,b
(I.41)

for some d, then the probability of error Pe is

Pe = 1− Φ

(√
d

2

)
, (I.42)

where Φ is the distribution function of a standard normal distribution, i.e.

Φ(x) =

∫ x

−∞

1√
2π
e−

1
2
z2dz .

Proof. The proof is exactly the same as the one of Theorem 3. The only change is
the definition of µ and σ.

3.6 Illustration in the case of a Linear Cryptanalysis

In the case of a standard linear cryptanalysis, the cardinal of Z is 2. The variable X
(resp. Y ) is in reality the product of a mask and of an input block (resp. an output
block) of a permutation. Thus both the sum of the rows and of the columns must
be equal to 1. The shape of the transition matrix is

T =

(
p 1− p

1− p p

)
,

where p = Pr [X = Y ]. If T is supposed to be close to an ideal transition matrix T ∗,
we obtain:
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T =

(
1/2 + ε 1/2− ε
1/2− ε 1/2 + ε

)
.

In [Mat94a], Matsui applies its linear cryptanalysis on 14-rounds DES. The linear
expression holds with a probability 1/2 + 1.19 · 2−21. With our notation, it means
that ε = 1.19 · 2−21. Matsui also shows that in that case, 243 plaintexts are needed
to conclude the attack. Theorem 6 allows to compute the corresponding probability
of error in such a case. It gives:

Pe = 0.0461958570 .

3.7 Necessary number of queries for distant distributions

We studied the case where T is close to T ∗. We now consider the opposite case, that
is when T and T ∗ are distant from each other.

Definition 9. We consider that T and T ∗ are distant when SuppT 6= SuppT ∗ and
when one of the two the following equations are verified:

∀(x, y) ∈ SuppT : Tx,y ≥ T ∗x,y

∀(x, y) ∈ SuppT ∗ : T ∗x,y ≥ Tx,y
Theorem 7. If we assume that T is distant from the uniform transition matrix T ∗

and that the distinguisher asks n questions, then the probability of error is such that

Pe ≤
( |SuppT |
|Z|2

)n
(I.43)

Proof. The proof is identical to the one of Theorem 4.
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Chapter II

The tools of Generalized Linear
Cryptanalysis

1 Introduction and notation

In section 2 we are going to introduce a fundamental mapping from a a finite exten-
sion Fqm of a finite field Fq. Some of its fundamental properties are also introduced.
In section 3 we will use it in order to define a transition matrix.

In what follows, Fqm is a finite extension of a finite field Fq. We can consider Fqm as
a vector space over Fq, of dimension m. The set α1, α2, . . . , αm ∈ Fqm will denote a
base of this vector space, i.e. every element α of Fqm can be uniquely written

α = c1α1 + c2α2 + · · ·+ cmαm with ci ∈ Fq ∀ 1 ≤ i ≤ m .

2 Trace

Definition 10. (Trace) The trace TrFqm/Fq (α) of an element α ∈ Fqm over Fq is
defined by

TrFqm/Fq (α) = α+ αq + · · ·+ αq
m−1

. (II.1)

If Fq is the prime subfield of Fqm (i.e. q is prime), the trace is called absolute trace
and simply denoted TrFqm (α).

We give here some useful properties of the trace function, proofs can be found in
[LN83].

Theorem 8. The trace function satisfies the following properties:

1. TrFqm/Fq (α+ β) = TrFqm/Fq (α) + TrFqm/Fq (β) for all α, β ∈ Fqm;

2. TrFqm/Fq (cα) = cTrFqm/Fq (α) for all c ∈ Fq and α ∈ Fqm ;
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3. TrFqm/Fq is a linear transformation from Fqm onto Fq, where both Fqm and Fq
are viewed as vector spaces over Fq;

4. TrFqm/Fq (a) = ma for all a ∈ Fq;

5. TrFqm/Fq (α
q) = TrFqm/Fq (α) for all α ∈ Fqm.

We give another theorem which is also taken from [LN83].

Theorem 9. (Transitivity of trace) The trace function is transitive, i.e. :

TrFqm/Fq (α) = TrFqn/Fq

(
TrFqm/Fqn (α)

)
(II.2)

for all α ∈ Fqm and for all integer n such that n divides m.

The following Theorem of the trace will be fundamental during our generalization
of linear cryptanalysis. It states that the trace is a balanced transformation.

Theorem 10. Let X be a random variable, uniformly distributed over Fqm viewed
as a vector space over Fq. In other terms we can write

X =




X0
...

Xm−1




where the Xi’s are iid random variables uniformly distributed over Fq. Then the
random variable TrFqm/Fq (X) is a uniformly distributed over Fq, i.e.

PrX∈UFqm

[
TrFqm/Fq (X) = c

]
=

1

q
for all c ∈ Fq .

Proof. As TrFqm/Fq is a mapping from Fqm onto Fq, there exists C ∈ Fqm such that

TrFqm/Fq (C) = c .

Thus we have:

PrX∈UFqm

[
TrFqm/Fq (X) = c

]
= PrX∈UFqm

[
TrFqm/Fq (X) = TrFqm/Fq (C)

]

= PrX∈UFqm

[
TrFqm/Fq (X−C) = 0

]
,

using the trace linearity. The trace of an element is equal to 0 when this element is
a root of (II.1). As this polynomial is of degree qm−1, there are at most qm−1 roots
among the qm elements of Fqm . So

PrX∈UFqm

[
TrFqm/Fq (X) = c

]
≤ qm−1

qm

=
1

q
.
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As ∑

c∈Fq

PrX∈UFqm

[
TrFqm/Fq (X) = c

]
= 1

we can conclude that

PrX∈UFqm

[
TrFqm/Fq (X) = c

]
=

1

q
.

3 A transition matrix using the trace

3.1 Definition

In this section we are going to define a specific transition matrix LT
f
Fqm/Fq

(a, b)

where a, b are elements of the field Fqm and f is a function over Fqm . This matrix
will be used to study the non-linearity of the function f . We will then see how this
concept generalizes the linear characteristic LP defined in the context of a linear
cryptanalysis.
Then we will use the study made in the first part of this work, together with the
notion of trace, to study the non linearity of the S-Box of AES.

Definition 11. (Linear Transition Matrix) Let f be a function over Fqm. The

linear transition matrix LT
f
Fqm/Fq

(a, b) of f from Fqm over Fq and for a, b ∈ F∗qm is

a q × q matrix such that

[
LT

f
Fqm/Fq

(a, b)
]
i,j

= PrX∈Fqm

[
TrFqm/Fq (bf(X)) = j|TrFqm/Fq (aX) = i

]
(II.3)

where the probability holds over the uniform distribution of the random variable X.
If Fq is the prime field of Fqm (i.e. q is prime), the Linear Characteristic Matrix is

simply denoted LT
f
Fqm

(a, b).

Example. We consider the case where f is C∗, the random permutation uniformly
distributed over Fqm . We have:

EC∗

[
[LTC∗

Fqm/Fq
(a, b)]i,j

]
= EX

[
PrC∗

[
TrFqm/Fq (bC

∗(X)) = j|TrFqm/Fq (aX) = i
]]

=
∑

x∈F

PrC∗

[
TrFqm/Fq (bC

∗(x)) = j|TrFqm/Fq (ax) = i
]

× PrX [X = x]

= 1/q .

In what follows we consider that q = 2n .
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If we take the specific case where n = 1, f is a permutation C and denote by p
the value of the coefficient of the first row, first column of the linear characteristic
matrix, we obtain

p =
[
LT

C
F2m

(a, b)
]
00

= PrX∈F2m
[TrF2m

(bC(X)) = 0|TrF2m
(aX) = 0]

= PrX∈F2m
[TrF2m

(bC(X)) = TrF2m
(aX)] ,

as F2 = {0, 1}. The linear characteristic one usually defines in the context of linear
cryptanalysis compares two bits, which is exactly what we do when we consider the
case where n = 1.

In what follows we will also need the following definition.

Definition 12. (Linear Bias Matrix) Let f be a function over Fqm and

LT
f
Fqm/Fq

(a, b) its transition matrix for a, b ∈ F∗qm. The linear bias matrix

LB
f
Fqm/Fq

(a, b) of f corresponding to the given linear transition matrix is defined as

LB
f
Fqm/Fq

(a, b) = LT
f
Fqm/Fq

(a, b)−U (II.4)

where U is a q × q matrix such that all entries are equal to 1
q .

3.2 A fundamental property on linear transition matrices

In this paragraph, we consider the situation of Figure II.1.

C(1)

C(2)

Z

X

Y

Figure II.1: Two rounds of a typical block cipher

Our objective is to determine the transition matrix on two rounds C (2) ◦C(1) given
the transition matrices of each individual round.
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Property 1. Consider the situation described on Figure II.1, where C (1) and C(2)

are two fixed permutations over Fqm . Suppose that, for every a, b, c ∈ F∗qm, the chain
TrFqm/Fq (aX)→ TrFqm/Fq (bY )→ TrFqm/Fq (cZ) is a Markov chain. Then:

LT
C(2)◦C(1)

Fqm/Fq
(a, c) = LT

C(1)

Fqm/Fq
(a, b)× LT

C(2)

Fqm/Fq
(b, c) (II.5)

Proof. We have:

[
LT

C(2)◦C(1)

Fqm/Fq
(a, c)

]
i,j

= Pr

[
TrFqm/Fq (cZ) = j | TrFqm/Fq (aX) = i

]

= q Pr

[
TrFqm/Fq (cZ) = j,TrFqm/Fq (aX) = i

]

=
∑

k∈Fq

Pr

[
TrFqm/Fq (cZ) = j,TrFqm/Fq (aX) = i | TrFqm/Fq (bY ) = k

]
.

Using the fact that TrFqm/Fq (aX) → TrFqm/Fq (bY ) → TrFqm/Fq (cZ) is a Markov
chain we conclude that:

[
LT

C(2)◦C(1)

Fqm/Fq
(a, c)

]
i,j

=
∑

k∈Fq

Pr

[
TrFqm/Fq (cZ) = j | TrFqm/Fq (bY ) = k

]

Pr

[
TrFqm/Fq (aX) = i | TrFqm/Fq (bY ) = k

]

=
∑

k∈Fq

Pr

[
TrFqm/Fq (cZ) = j | TrFqm/Fq (bY ) = k

]

Pr

[
TrFqm/Fq (bY ) = k | TrFqm/Fq (aX) = i

]

=
∑

k∈Fq

[
LT

C(2)

Fqm/Fq
(b, c)

]
k,j

[
LT

C(1)

Fqm/Fq
(a, b)

]
i,k

which concludes the proof.

In what follows, we will consider that the hypothesis of Property 1 is always verified.

3.3 Some useful properties

In this paragraph, we denote by U the q × q matrix such that [U]i,j = 1
q for all

i, j ∈ {0, . . . , q − 1}. We also consider two q × q transition matrices LT and LT
′

of
some permutations and their corresponding bias matrices LB and LB, such that :

LT = U + LB and LT
′

= U + LB
′

.
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We denote [LB]i,j = εi,j and [LB
′

]i,j = δi,j for i, j ∈ {0, . . . , q−1}. We also denote by
P a random permutation matrix. We recall there are exactly q! such q×q transition
matrices. We call P the associated permutation of {0, . . . , p− 1} such that:

[P × LT]i,j = [LT]P(i),j .

Finally, M denotes any q × q matrix.

Property 2. For any transition matrices LT and LT
′

and any permutation matrix
P we have:

LT = P × LT
′ ⇔ LB = P × LB

′

.

Proof. We have:

LT = P × LT
′ ⇔ LT −U = P × LT

′ −U

⇔ LB = P ×
(
LT

′ −U

)

⇔ LB = P × LB
′

.

Property 3. For any q × q matrix M we have:

‖ P ×M ‖22=‖M × P ‖22=‖M ‖22
Proof. We have:

‖ P ×M ‖22=
∑

i,j

[M ]2P(i),j =
∑

i,j

[M ]2i,j =‖M ‖22 .

Property 4. For any transition matrix LT of some permutation, and the corre-
sponding bias matrix LB, we have:

U× LT = LT ×U = U and U× LB = LB ×U = 0 .

Proof. We have:

[U× LT]i,j =
∑

l

[U]i,l[LT]l,j =
1

q

∑

l

[LT]l,j =
1

q

as LT is a transition matrix. The equality holds for LT × U because LT is the
transition matrix of a permutation, thus the coefficients of a column also sum to
one. The other equality is a corollary of the previous one.

Property 5. Considering two transition matrices LT and LT
′

of two permutations
and their corresponding bias matrices LB and LB

′

, we have:

LT × P × LT
′

= U + LB × P × LB
′
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Proof. Using property 4 we have:

LT × P × LT
′

= (U + LB)× P × (U + LB
′

)

= U× P ×U + U× P × LB
′

+ LB × P ×U + LB × P × LB
′

= U + U× LB
′

+ LB ×U + LB × P × LB
′

= U + LB × P × LB
′

Corollary 1.
‖ LT × P × LT

′ −U ‖2=‖ LB × P × LB
′ ‖2 .

From what we have just seen we conclude that in order to evaluate the efficency of a
transition matrix of the the type P1 × LT ×P2 × LT

′

, it is sufficient to compute the
euclidian norm of the matrix LB × P2 × LB

′

as the previous properties show that:

‖ P1 × LT × P2 × LT
′ −U ‖22 = ‖ P1 × (LT × P2 × LT

′ −U) ‖22
= ‖ LT × P2 × LT

′ −U ‖22
= ‖ LB × P2 × LB

′ ‖22 .

In the next paragraph, we study the mean of the last expression, considering every
possible permutation matrix.

3.4 A first generalization of the piling-up lemma

The generalization

The following theorem states that the value of ‖ LB × P × LB
′ ‖22 is proportional

to the product of both euclidian norm of LB and LB
′

if we consider the mean on
every possible permutation matrix P . In the next chapters we will see that the
bias matrix corresponding to the succession of a permutation, a key xoring and an
another permutation (typical in a block cipher) can be written

LB × P × LB
′

where LB and LB
′

correspond to the bias matrices of two layers, separated by a key
xoring, represented by the permutation P . The next theorem can thus be considered
like a generalization of the classic piling-up lemma of standard linear cryptanalysis.

Theorem 11. Generalized Piling-up lemma We consider two bias matrices LB

and LB
′

corresponding to the bias matrices of some permutations. We also consider
P , a random permutation matrix uniformly distributed. We have:

EP

[
‖ LB × P × LB

′ ‖22
]
=

1

q − 1
‖ LB ‖22 · ‖ LB

′ ‖22 .
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Proof. We have:

[LB × P × LB
′

]i,j =
∑

l

εi,lδP(l),j .

Thus
‖ LB × P × LB

′ ‖22=
∑

i,j

∑

l,l′

εi,lδP(l),jεi,l′δP(l′),j .

We can compute the expectation of the last expression:

EP

[
‖ LB × P × LB

′ ‖22
]
=

1

q!

∑

P

∑

i,j

∑

l,l′

εi,lδP(l),jεi,l′δP(l′),j

=
1

q!

∑

P

∑

i,j

∑

l

ε2i,lδ
2
P(l),j +

1

q!

∑

P

∑

i,j

∑

l,l′

l 6=l′

εi,lδP(l),jεi,l′δP(l′),j

=
1

q!

∑

i,j

∑

l

ε2i,l
∑

P

δ2P(l),j +
1

q!

∑

i,j

∑

l,l′

l 6=l′

εi,lεi,l′
∑

P

δP(l),jδP(l′),j .

However, we also have:

∑

P

δ2P(l),j =
∑

P

(∑

u

1P(l)=u

)
δ2P(l),j

=
∑

P

∑

u

1P(l)=uδ
2
u,j

=
∑

u

δ2u,j
∑

P

1P(l)=u

= (q − 1)!
∑

u

δ2u,j ,

33



and

∑

P

δP(l),jδP(l′),j =
∑

P



∑

u,u′

u6=u′

1 P(l)=u
P(l′)=u′


 δP(l),jδP(l′),j

=
∑

P

∑

u,u′

u6=u′

1 P(l)=u
P(l′)=u′

δu,jδu′,j

=
∑

u,u′

u6=u′

δu,jδu′,j
∑

P

1 P(l)=u
P(l′)=u′

= (q − 2)!
∑

u,u′

u6=u′

δu,jδu′,j

= (q − 2)!
∑

u

δu,j
∑

u′

u′ 6=u

δu′,j

= −(q − 2)!
∑

u

δ2u,j .

Thus :

EP

[
‖ LB × P × LB

′ ‖22
]
=

1

q

∑

i,j

∑

l,u

ε2i,lδ
2
u,j −

1

q(q − 1)

∑

i,j

∑

l,l′

l 6=l′

εi,lεi,l′
∑

u

δ2u,j

=
1

q


∑

i,l

ε2i,l




∑

u,j

δ2u,j




− 1

q(q − 1)

∑

i,j

∑

u

∑

l

δ2u,jεi,l
∑

l′

l 6=l′

εi,l′

=
1

q
‖ LB ‖22 · ‖ LB

′ ‖22 +
1

q(q − 1)

∑

i,j

∑

u

∑

l

δ2u,jε
2
i,l

=
1

q
‖ LB ‖22 · ‖ LB

′ ‖22 +
1

q(q − 1)


∑

i,l

ε2i,l




∑

u,j

δ2u,j




=
1

q − 1
‖ LB ‖22 · ‖ LB

′ ‖22 .

As we are going to see, this theorem offers only limited accuracy. We can notice
that it is very easy to obtain an upper bound on ‖ LB×P ×LB

′ ‖22. We thus obtain
a lower bound on the number of needed queries.
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Property 6. We consider two bias matrices LB and LB
′

corresponding to the bias
matrix of some permutation. We also consider P , a permutation matrix. We have:

‖ LB × P × LB
′ ‖22 ≤ ‖ LB ‖22 · ‖ LB

′ ‖22 . (II.6)

Proof. The euclidian norm ‖ · ‖2 is a matrix norm, thus

‖ LB × P × LB
′ ‖22 ≤ ‖ LB ‖22 · ‖ P × LB

′ ‖22 .

Using Property 3, we conclude that

‖ LB × P × LB
′ ‖22 ≤ ‖ LB ‖22 · ‖ LB

′ ‖22 .

Practical tests on the accuracy of the piling-up lemma

In the next chapter we will see that the permutation matrix Pk resulting from a
subkey xoring will have the following shape:

[Pk]i,j = [I]i⊕k,j ∀i, j, k ∈ Fq ,

where I the identity matrix and where k is a random variable uniformly distributed
on Fq. Suppose now that we want an approximation of the bias matrix corre-
sponding to one round with a bias matrix LB, followed by a subkey xoring which
implies a permutation matrix Pk, followed by another round with a bias matrix LB

′

.
Using Property 2 with know that the bias matrix of the whole system is simply
LB × Pk × LB

′

. Suppose that we want to compute the euclidian norm of this ma-
trix. As the permutation matrix is unknown, we use the piling-up lemma in order to
approximate the needed value. We can then wonder about the accuracy of the result.

In order to test the accuracy of Theorem 11, we propose some practical results,
shown on Figure II.2. Here we represent

errq = max
k




∣∣∣‖ LB × Pk × LB
′ ‖22 − 1

q−1 ‖ LB ‖22‖ LB
′ ‖22
∣∣∣

1
q−1 ‖ LB ‖22‖ LB

′ ‖22


 (II.7)

in function of εmax, the maximum value of any entry of bias matrices. Both LB and
LB

′

are chosen randomly, according to this specification. Equation (II.7) represents
the worst case, i.e. the case where the theorem has the worst precision. On Figure
II.2 we show the results of several experiments (modifying the value of εmax) in three
different cases, whether q is 2, 4 or 16.
We first notice that the theorem is not an approximation but a perfect result in the
case where q = 2, i.e. we can write:

‖ LB × Pk × LB
′ ‖22 = ‖ LB ‖22‖ LB

′ ‖22 ∀k ∈ F2 .
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Figure II.2: Accuracy of the generalized piling-up lemma when q is 2, 4 or 16

We see that the bigger the cardinal of the arrival field of the trace, the worst pre-
cision we obtain in the worst case. We also see that the worst case seems somehow
independent of εmax (the maximum value of all entries of the bias matrix).

Another interesting results are shown on Figure II.4 and II.5. Considering the case
q = 4, it seems that the variable errkq defined by

errkq =

∣∣∣‖ LB × Pk × LB
′ ‖22 − 1

q−1 ‖ LB ‖22‖ LB
′ ‖22
∣∣∣

1
q−1 ‖ LB ‖22‖ LB

′ ‖22
(II.8)

can take four different types of values. We see on Figure II.4 that errkq ≈ 0.57 , 0.41

, 0.25 or 0.16. A similar results can be obtained for q = 16, where errkq seems to
take sixteen different types of values.

It also seems that that those typical values cannot be linked to particular value of
k. For example when q = 4 and k = 0, err04 is approximatively equal to 0.57 one
time over four. We cannot conclude anything though, as the bias matrix used for
the study where chosen at random, which in a real attack is not going to be the
case.
In order to complete this practical study, we compute errkq when LB and LB

′

are
not computed at random but defined by AES substitution box and using the masks
(0x08,0x55) and (0x08,0x9B) respectively. In the next section we show how to
compute these two matrices:
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LB =



−0.062500 −0.062500 0.187500 −0.062500
0.062500 0.031250 −0.062500 −0.031250
0.000000 0.000000 −0.093750 0.093750
0.000000 0.031250 −0.031250 0.000000


 ,

LB
′

=



−0.062500 −0.062500 −0.062500 0.187500
0.062500 −0.031250 0.031250 −0.062500
0.000000 0.093750 0.000000 −0.093750
0.000000 0.000000 0.031250 −0.031250


 .

The obtained results are shown on Figure II.3.

k 0 1 2 3

errkq 0.093688 0.736686 0.874753 0.505917

Figure II.3: Values of errkq when LB and LB
′

are defined by AES S-box
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Figure II.4: Mean distance between the true bias and the bias approximated by the
piling-up lemma, when q = 4
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Figure II.5: Mean distance between the true bias and the bias approximated by the
piling-up lemma, when q = 16

3.5 Why there is no second generalization of the piling-up lemma
(yet)

We try to provide here an another type of generalization. Whereas the previous

study gives an equality on EP

[
‖ LB × P × LB

′ ‖22
]
, this study tries to give a lower

bound on ‖ LB×P×LB
′ ‖22, independent of P . In other words, this will corresponds

to an upper bound on the number of needed plaintext/ciphertext couples for gen-
eralized cryptanalysis. This research is motivated by the fact that the preceeding
generalization accuracy seems very limited.

A mathematical property of definite positive matrices

Definition 13. Positive Definite Matrix A q× q real matrix A is called positive
definite if

xTAx > 0 (II.9)

for all nonzero vectors x ∈ Rq, where xT denotes the transpose.

The following theorem is proved in [Dan01]. It gives a lower bound on the trace of
the product of two positive definite matrices.

Theorem 12. If A and B are two q × q positive definite matrices then

q (|A| · |B|)
m
q ≤ tr (AmBm) (II.10)

for any positive integer m, and where |·| denotes the matrix determinant.

We will make use of a specific case of the preceeding theorem.
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Corollary 2. If A and B are two q × q positive definite matrices then

tr (AB) ≥ q(|A| |B|)
1
q , (II.11)

where |·| denotes the matrix determinant.

Definition 14. Let A be a q× q real matrix. A is said to be nonsingular iff |A| 6= 0,
where |·| denotes the determinant of a matrix.

One last property about positive definite matrices will be used.

Property 7. For any nonsingular matrix M , the matrix MTM is positive definite.

Proof. For any vector x 6= 0,

xT(MTM)x = (Mx)T(Mx)

= ‖Mx ‖22

But

‖Mx ‖22= 0 ⇔ Mx = 0

⇔ 0 is an eigen value of M

⇔ |M | = 0

which is impossible as M is nonsingular.

Where we generalize the piling-up lemma and explain why it doesn’t
work

In this generalization, we search for a lower bound on ‖ LB×P×LB
′ ‖22, which would

be independent of P . The following theorem gives such a bound for nonsingular
matrices.

Theorem 13. Let A and B be two real nonsingular q × q matrices and let P be a
permutation matrix. We have:

‖ A× P ×B ‖22 ≥ q(|A| |B|)
2
q . (II.12)

Proof. We have:

‖ A× P ×B ‖22 = tr
(
(A× P ×B)× (A× P ×B)T

)

= tr
(
A× P ×B ×BT × P T ×AT

)

= tr
(
AT ×A× P ×B ×BT × P T

)

= tr
(
AT ×A× (P ×B)× (P ×B)T

)
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Let A′ = AT ×A and B′ = (P ×B)× (P ×B)T . By Property 7, as A is nonsingular,
then A′ is positive definite. As B is non singular, we have |P ×B| = |P | |B| 6= 0 as
|P | 6= 0 and |B| 6= 0. Thus P ×B is nonsingular. Following Property 7, this implies
that B′ is positive definite. We thus can apply Theorem 12:

‖ A× P ×B ‖22 = tr
(
A′ ×B′

)

≥ n(
∣∣A′
∣∣ ∣∣B′

∣∣) 1
n

= n(
∣∣AT ×A

∣∣ ∣∣P ×B ×BT × P T
∣∣) 1

n

= n(|A|2 |B|2
∣∣P × P T

∣∣) 1
n

= n(|A|2 |B|2 |I|) 1
n

= n(|A| |B|) 2
n .

The last theorem could gives us a very useful bound, namely that

‖ LB × P × LB
′ ‖22 ≥ q(|LB|

∣∣∣LB
′

∣∣∣)
2
q .

The only problem is that a linear bias matrix is such that the sum of all columns
gives 0, so that the determinant of any linear bias matrix is null. These kind of
matrices are thus always singular, Theorem 13 does NOT apply to them. However,
it is still possible to give some kind of generalization of the piling-up lemma.

Theorem 14. (Another generalization of the piling-up lemma) We consider
two q× q bias matrices LB and LB

′

corresponding to the bias matrices of some per-
mutations. We also consider P a permutation matrix. If there exists two nonsingular
q × q matrices A and B such that

‖ LB × P × LB
′ ‖2 ≥ ‖ A× P ×B ‖2 ,

then
‖ LB × P × LB

′ ‖22 ≥ q(|A| |B|)
2
q .

Proof. We know that ‖ LB × P × LB
′ ‖2 ≥ ‖ A × P × B ‖2. As A and B are

nonsingular, then we can apply Theorem 13 and obtain the announced result.

Why this is not a generalization (yet)

We have seen that it is somehow possible to find a lower bound on ‖ LB×P ×LB
′ ‖2

under the condition to find two appropriate nonsingular matrices A and B such that
‖ LB × P × LB

′ ‖2 ≥ ‖ A × P × B ‖2. However, finding such matrices doesn’t
seems to be an easy task, and this why Theorem 14 cannot be considered as a true
generalization.
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4 Case study : The AES S-box

In this section, we are going to test experimentally the results obtained in the past
sections. LT

S
F28/Fq

(resp. LT
∗
F28/Fq

) will denote the transition matrix of the per-

mutation of F28 defined by the S-box of AES (resp. the random permutation of
F28 uniformly distributed C∗). The corresponding bias matrices will be denoted
LB

S
F28/Fq

and LB
∗
F28/Fq

respectively. We note that LT
S
F28/Fq

(and thus LB
S
F28/Fq

) de-

pends on the applied mask on the AES S-box. If the mask is denoted (a, b), the
corresponding transition matrix will be denoted LT

S
F28/Fq

(a, b). Similarly, the corre-

sponding bias matrix will be denoted LB
S
F28/Fq

(a, b). To simplify notations, we will

drop the subscript on these definitions. However we should keep in mind that q is
the cardinal of the trace arrival space, such that log(q) should divide 8, as the AES
S-box is defined over 28.
Our experiment consists in two parts. In the first one, we look for the best couples
(a, b) such that the number of queries needed to distinguish LT

S from LT
∗ is minimal

(given a fixed probability of error). In the second one, we consider an oracle which
implements either LT

S or LT
∗. Our distinguisher asks n questions to it and takes a

decision L̂T. We iterate this algorithm and compute the number of errors it makes.

4.1 Finding the best mask

We use Algorithm 5 in order to find the best masks, i.e. those that minimize the
number of questions needed to distinguish LT

S from LT
∗.

When LB
S is close to LB

∗, we recall that this number is computed according to the
following equation:

n =
1

‖ LB
S ‖22

,

which corresponds to a probability of error Pe = 1 − Φ
(

1
2

)
≈ 0.3085 (see Theorem

6). When LB
S is far from LB

∗ (which we consider to be the case when LT
S has

some 0 entry), the number of query is computed according to the following equation
(see Theorem 7):

n ≤ logPe

log |SuppT |
q2

For the computations we fix Pe to 1 − Φ
(

1
2

)
and consider that the bound approxi-

mates the necessary number of queries. In the algorithm n(a, b) corresponds to this
experimental computation when the mask used on AES S-box is (a, b).
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Parameters: An S-box S defining a permutation over Fqm , a (qm− 1)× (qm− 1) matrix n

s.t. n(a, b) is the evaluation of the number of queries needed to distinguish LT
S (a, b) from

LT
∗.

Input: The cardinal of the arrival space of the trace q.

1: for every (a, b) ∈ F∗qm × F∗qm do

2: for every X ∈ Fqm do

3: Compute i← TrFqm/Fq
(aX)

4: Compute j ← TrFqm/Fq
(bS(X))

5: Increment [LT (a, b)]i,j

6: end for

7: Compute LT (a, b)← 1
qm−1 LT (a, b)

8: Compute the bias matrix LB (a, b) corresponding to LT (a, b)

9: if LT is distant from LT
∗ then

10: Compute n(a, b)← 1.67

2 log q−log
˛

˛

˛
Supp

LT

˛

˛

˛

11: else

12: Compute n(a, b)←‖ LB (a, b) ‖−2
2

13: end if

10: end for

11: Display (n(a, b), a, b) sorted by increasing n(a, b)

Algorithm 5: Finding the best couples (a, b)

F2 F22 F24

(a, b) n(a, b) (a, b) n(a, b) (a, b) n(a, b)

(0x01,0x1E) 64.000000 (0x08,0x55) 13.128205 (0x 4,0x 8) 3.328335
(0x01,0x4A) 64.000000 (0x08,0x9B) 13.128205 (0x 4,0x21) 3.328335
(0x01,0x54) 64.000000 (0x08,0xCE) 13.128205 (0x 4,0x29) 3.328335
(0x01,0x66) 64.000000 (0x21,0x55) 13.128205 (0x 4,0x41) 3.328335
(0x01,0x78) 64.000000 (0x21,0x9B) 13.128205 (0x 4,0x49) 3.328335
(0x02,0x 3) 64.000000 (0x21,0xCE) 13.128205 (0x 4,0x60) 3.328335
(0x02,0x15) 64.000000 (0x97,0x55) 13.128205 (0x 4,0x68) 3.328335
(0x02,0x25) 64.000000 (0x97,0x9B) 13.128205 (0x 4,0x97) 3.328335
(0x02,0x26) 64.000000 (0x97,0xCE) 13.128205 (0x 4,0x9F) 3.328335
(0x02,0x33) 64.000000 (0x9F,0x55) 13.128205 (0x 4,0xB6) 3.328335
(0x03,0x 8) 64.000000 (0x9F,0x9B) 13.128205 (0x 4,0xBE) 3.328335

. . . . . . . . . . . . . . . . . .
(0xFF,0xD9) ∞ (0xFC,0x7E) 170.666672 (0xFF,0x74) 4.456977
(0xFF,0xFE) ∞ (0xFC,0xB9) 170.666672 (0xFF,0x7A) 4.456977
(0xFF,0xFF) ∞ (0xFC,0xC7) 170.666672 (0xFF,0x7F) 4.456977

Figure II.6: First ten best masks (and worst three) when q is 2, 22 or 24

Figure II.6 presents the results when q is 1, 2 or 4 respectively.
We can also see that making a bad mask choice in F24 is harmless (as the number of
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questions needed is almost the same in the best case and in the worst case) whereas
this choice is important in F2.

4.2 Experimental probability of error

In this section we will first study the probability that the distinguisher decides that
the Generator implements LT

∗ whereas it implements LT
S , which is the α probability

of error defined in a past section. Then we will study the overall probability of error.
In both cases, we consider three possible values of q.

Probability of error α

The first error we will study is the one where our distinguisher decides that the Gen-
erator implements the ideal transition matrix whereas it does not. The configuration
is shown on Figure II.7.

Y1, Y2, . . . , Yn

X1, X2, . . . , Xn

S-box of AES

0 (good guess) or 1 (wrong guess)

G

A

Figure II.7: Computing experimental α error

The idea is to iterate the experiment and compute an experimental probability of
error depending on the complexity n (i.e. the number of allowed queries to the
Generator). In other terms we compute the experimental value of α.
We apply this algorithm for the usual three different cases, i.e. when q is 2, 4 or 16.
For each case the mask (a, b) is chosen according to the best result of Algorithm 5.
The results of our experiments are given in Figure II.8. As one could expect, as the
linear transition matrix of S contains some 0 when q = 16, the α error is 0 in that
case.
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Figure II.8: Experimental α error in function of the number of allowed questions to
the Generator

Parameters: A complexity n, a mask (a, b) ∈ F ∗×F ∗, the corresponding transition matrix
for the S-box LT

S
Fqm/Fq

(a, b)

Input: a Generator G which implements the AES S-box and outputs S(X) for any query
X.

1: for i = 1, . . . , n do

2: Pick X uniformly at random

3: Compute xi ← TrFqm/Fq
(aX)

4: Send X to the Generator G and receive Y

5: Compute yi ← TrFqm/Fq
(bY )

6: end for

7: Compute LR = qn
∏n

i=1[LT
S
Fqm/Fq

(a, b)]xi,yi

8: if LR ≥ 1 then

9: Output 0

10: else

11: Output 1

12: end if

Algorithm 6: Experimental probability of error α
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Overall probability of error

y1, . . . , yn

x1, . . . , xn

ideal transition matrix or LT
S
F/K (a, b)

cLT

LTimpl

0 or 1

G

A

cLT = LTimpl

Figure II.9: Experimental overall probability of error

In an another approach we can compute an experimental overall probability of error.
We consider a special type of Generator, shown on Figure II.9. It implements either
the transition matrix LT

S
Fqm/Fq

(a, b) or the ideal transition matrix. The distinguisher

asks n questions to it and then guess what the Generator implements. It can then
ask a last question, namely what to Generator implements. The distinguisher then
outputs 0 if its guess is right, 1 otherwise. This algorithm is iterated in order to
obtain an experimental probability of error. Algorithm 7 implements it.

0
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0.2

0.3

0.4

2 4 6 8 10 12 14 16 18 20

F16

F4

F2

Figure II.10: Experimental overall probability of error function of the number of
queries
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Parameters: A complexity n, a mask (a, b) ∈ F ∗×F ∗, the corresponding transition matrix
for the S-box LT

S
Fqm/Fq

(a, b)
Input: An Generator G which implements either the ideal transition matrix or
LT

S
Fqm/Fq

(a, b) with equal probabilities

1: for i = 1, . . . , n do

2: Pick X uniformly at random

3: Compute xi ← TrFqm/Fq
(aX)

4: Send xi to the Generator G and reive yi

5: end for

6: Compute LR = qn
∏n

i=1[LT
S
Fqm/Fq

(a, b)]xi,yi

7: if LR ≥ 1 then

8: Set L̂T ← LT
S
Fqm/Fq

(a, b)

9: else

10: Set L̂T ← LT
∗

11: end if

12: Receive LTimpl from the Generator G
13: if L̂T = LTimpl then

14: Output 0

15: else

14: Output 1

15: end if

Algorithm 7: Experimental overall probability of error
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Chapter III

Generalized Linear
Cryptanalysis of a simple cipher

1 Description of the cipher

We now introduce a very simple SPN, represented on Figure III.1, which is inspired
from a little cipher presented in [Hey99]. The block and the subkey are 16 bits long.
The cipher is made of 3 identical rounds (a key xoring, an S-box layer and a permu-
tation) followed by a round without permutation and an additional key xoring. The
substitution box is AES S-box, it is represented on Figure III.2 in hexadecimal.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Figure III.2: The cipher’s S-box S(xy) where x designs a row and y a column

The permutation is described on Figure III.3. In that table, a number represents a
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SS
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SS

Figure III.1: A simple SPN
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bit position, 1 being the leftmost bit.

input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

output 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Figure III.3: The cipher’s permutation

The key layer corresponds to a a bitwise xor between the subkey bits and the text
bits. We consider the five subkeys of the cipher to be independent.

2 Notations

The input and the output of the cipher will be denoted X and Y respectively. The
key of round i ∈ {1, 2, 3, 4, 5} will be denoted K(i). These values will be considered
vectors of four elements in F16, that is:

X =




X0

X1

X2

X3


 , Y =




Y0

Y1

Y2

Y3


 and K(i) =




K
(i)
0

K
(i)
1

K
(i)
2

K
(i)
3


 .

The input of round i will be denotedX(i) and its outputY(i). We thus haveX(1) = X
and Y(4) = Y. When studying one single round, the output of the key-layer will be
denoted U and the output of S-boxes layer V. The most significant bit will always
be on the left.

The definition of the transition matrix has to be slightly modified so it is adapted
to our cipher. We will consider that it is defined in the following way :

[LTC
F16/Fq

(a,b)]i,j = Pr
[
TrF16/Fq (b ·Y) = j | TrF16/Fq (a ·X) = i

]
,

where the · operation denotes the scalar product and where a and b are 16 bits
masks considered like vectors of four elements in F16 :

a =




a0

a1

a2

a3


 and b =




b0
b1
b2
b3


 .

As the departure field of the trace is F16, we can study two cases, whether the arrival
space Fq is F2 or F4.
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3 Unbalanced linear expressions vs. biased transition
matrices

In a classical linear cryptanalysis, the attacker tries to find an unbalanced linear
expression on the first four rounds of the cipher, the last subkey K(5) excepted. In
order to do this one would approximate the S-box by a linear expression, use it to
approximate a full round of the cipher and then make use of the Piling-up Lemma
in order to approximate the whole cipher without the last subkey layer. A good
approximation involves a unbalanced linear expression. A linear expression is un-
balanced when the LP coefficient is far from 0.

In our generalization, linear expressions will be replaced by transition matrices. In
order to find good masks on the whole cipher starting with goods masks on S-
boxes we had to generalize the Piling-up lemma. Before we use this we start by an
exhaustive search on all possible transition matrices (i.e. all possible input/output
masks (a,b)) in order to find the best one (i.e. the one for which the euclidian norm
of the corresponding bias matrix is maximum) for the first rounds of the cipher. This
is what we do in the next paragraph. As the LP was a measure on the efficacity
of a particular linear expression, it is replaced here by the inverse of the euclidian
norm of the bias matrix. When this value is high, the matrix is close to the ideal
transition matrix (i.e. the input/output mask is inefficient). When this value is low
the matrix is biased.

4 Exhaustive search on input/output masks

We thus try to find biased transition matrices on the cipher without the last subkey
and the last S-box layer. We have to use an exhaustive search on all possible (a,b)
values. We should note that this search is key dependent, i.e. the matrices that we
are looking for will depend on the key values. This should not be the case as the
biased transition matrix used during the attack should be efficient for any possible
keys. The idea will be to find some key-dependent biased transition matrices and
then select the most effective ones, that is those that stay effective even if the sub-
keys of the cipher change.

We thus first fix the subkey values. For our experiment we have chosen the following
random values

(K(1),K(2),K(3),K(4),K(5)) = (0x3f3b, 0xa1d5, 0x095a, 0x71bb, 0xd18e) .

The best input/output masks (i.e. those that define the most biased transition
matrices) are :

• (0x3600,0xd994) in F2 (with n(a, b) ≈ 894),
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• (0x3600,0xd994), (0x9100,0xd994) and (0xa700,0xd994) in F4 (with n(a, b) ≈
687).

In order to find them, 128 SUN Ultra 10 where used during approximately 3 days
for each field.

5 Analysis of the cipher

In order to make the cryptanalysis of the cipher in F16, we first have to represent it
in a different way. Whereas the permutation is a linear transformation in F2, it is not
linear anymore in F16. We will thus group the bits by group of 4 and try to represent
the permutation in a suitable way for the attack. We consider here one round of the
cipher (i.e. one key layer, one S-box layer and one permutation layer). We see that
it can be represented like on Figure III.4. We have splitted the permutation into
three permutations. The resulting round is equivalent to the previous one.
We now denote by S1 the S-box containing the AES S-box and the first part of the
permutation. On Figure III.5 we show the resulting round of the cipher, followed
by the key layer of the following round.

K(r)

S1 S1

K(r+1)

Figure III.5: Second analysis of one round of the cipher

We consider now the cipher part consisting of the last permutation and the key layer
K(r+1). In order to simplify the notation, we just name the key K. This part is
equivalent to a key layer K̃ followed by the same permutation (see Figure III.6) such
that:
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SS

K(r)

Figure III.4: First analysis of one round of the cipher



K̃0
...

K̃15


 =

(
P 0
0 P

)
×



K0
...

K15


 ,

with K0, . . . ,K15, K̃0, . . . , K̃15 ∈ F2 and

P =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



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After this inversion between the key layer and the permutation, we can integrate
the last permutation of round r into the s-box layer of round r + 1. We show the
final cipher on Figure III.8. On this cipher we see three types of S-box : S1, S2 and
S3. According to the previous analysis, these S-boxes are such that :

• S1 ≡ S followed by the first part of the initial permutation

• S2 ≡ the last part of the initial permutation followed by S, followed by the
first part of the initial permutation

• S3 ≡ the last part of the initial permutation followed by S.

K̃

K

≡

Figure III.6: Third analysis of the cipher

6 A transition matrix on one round of the cipher

6.1 The study

We consider here one round of the cipher (the analyzed version). We denote by X
the round input and by Y the round output. We also name U and V the input and
the output of the round S-box respectively. Here we simply denote by K the round
subkey and by Si the round S-box. We summarize these notations on Figure III.7.
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K

Si Si

X

U

V

Y

Figure III.7: One round of the analyzed SPN

We can now try to compute a transition matrix on one round R :

[LTR
F16/Fq

(a,b)]i,j = PrX

[
TrF16/Fq (b ·Y) = j | TrF16/Fq (a ·X) = i

]

= PrX

[
TrF16/Fq (b ·Y) = j | TrF16/Fq (a · (U⊕K)) = i

]

= PrX

[
TrF16/Fq (b ·Y) = j | TrF16/Fq (a ·U) = i⊕ k

]
,

with k = TrF16/Fq (a ·K). As K is a random variable uniformly distributed in F16

and as the trace is a balanced transformation from F16 onto Fq (see Th. 10), k is a
random variable of Fq uniformly distributed. Thus:

[LTR
F16/Fq

(a,b)]i,j = PrX

[
TrF16/Fq

(
b̃ ·V

)
= j | TrF16/Fq (a ·U) = i⊕ k

]

with

b̃ =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


× b .

We thus finally have

[LTR
F16/Fq

(a,b)]i,j =
[
LT

S
F16/Fq

(
a, b̃

)]
i⊕k,j

for every i and j of Fq. If I is the q× q identity matrix, we denote by Pk the matrix
of permutation such that

[Pk]i,j = [I]i⊕k,j ∀ i, j, k ∈ Fq .

For one round of the cipher, we thus obtain
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K1

K̃2

K̃3

K̃4

K5

S1 S1

S2 S2

S2 S2

S3 S3

Figure III.8: The new equivalent shape of the simple SPN, with linear transforma-
tions in F16
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LT
R
F16/Fq

(a,b) = Pk × LT
S
F16/Fq

(
a, b̃

)
(III.1)

We can note that if

a =




a0

a1

0
0


 and b =




b0
0
b2
0




(i.e. only one S-box is active) we obtain :

LT
R
F16/Fq

(a,b) = Pk × LT
Si
F16/Fq

(
a, b̃

)
(III.2)

The general case is slightly more difficult to solve. What we want to obtain is an
expression of LTF16/Fq which would involve the transition matrices of the S-boxes,
and not the transition matrix of the S-box layer. We thus have to give an equation
that allows to compute the transition matrix of the S-box layer according to the
transition matrix of the S-box. In the following equations, we simply denote LTF16/Fq

and TrF16/Fq by LT and Tr respectively. If we use the notations

a01 =




a0

a1

0
0


 , a23 =




0
0
a2

a3


 , b01 =




b0
b1
0
0


 , b23 =




0
0
b2
b3


 ,

so that a = a01 ⊕ a23 and that b = b01 ⊕ b23 we have:
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[
LT

S (a,b)
]
i,j

= Pr [Tr (b ·V) = j | Tr (a ·U) = i]

= q Pr [Tr (b ·V) = j,Tr (a ·U) = i]

= q
∑

l∈Fq

Pr [Tr (b ·V) = j,Tr (a ·U) = i,Tr (b01 ·V) = l]

= q
∑

l∈Fq

Pr [Tr (b23 ·V) = j ⊕ l,Tr (a ·U) = i,Tr (b01 ·V) = l]

= q
∑

l,m∈Fq

Pr [Tr (b23 ·V) = j ⊕ l,Tr (a ·U) = i,

Tr (b01 ·V) = l,Tr (a01 ·U) = m]

= q
∑

l,m∈Fq

Pr [Tr (b23 ·V) = j ⊕ l,Tr (a23 ·U) = i⊕m,

Tr (b01 ·V) = l,Tr (a01 ·U) = m]

= q
∑

l,m∈Fq

Pr [Tr (b01 ·V) = l,Tr (a01 ·U) = m]

Pr [Tr (b23 ·V) = j ⊕ l,Tr (a23 ·U) = i⊕m]

=
1

q

∑

l,m∈Fq

Pr [Tr (b01 ·V) = l | Tr (a01 ·U) = m]

Pr [Tr (b23 ·V) = j ⊕ l | Tr (a23 ·U) = i⊕m]

=
1

q

∑

l,m∈Fq

[LTS (a01,b01)]m,l [LT
S (a23,b23)]i⊕m,j⊕l

If we set u = i⊕m, we obtain:
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[
LT

S (a,b)
]
i,j

=
1

q

∑

l,u∈Fq

[LTS (a01,b01)]i⊕u,l [LT
S (a23,b23)]u,j⊕l

=
1

q

∑

l∈Fq


∑

u∈Fq

[LTS (a23,b23)× Pj ]u,l [Pi × LT
S (a01,b01)]u,l




=
1

q

∑

l∈Fq


∑

u∈Fq

[
Pj × T

LT
S (a23,b23)

]
l,u

[Pi × LT
S (a01,b01)]u,l




=
1

q

∑

l∈Fq

[
Pj × T

LT
S (a23,b23)× Pi × LT

S (a01,b01)
]
l,l

=
1

q
Tr
(
Pj × T

LT
S (a23,b23)× Pi × LT

S (a01,b01)
)
.

Finally, for one S-box layer of the cipher and when both S-boxes are active, we have:

[
LT

S
(
a, b̃

)]
i,j

=
1

q
Tr
(
Pj × T

LT
S

(
a23, b̃23

)
× Pi × LT

S

(
a01, b̃01

))
. (III.3)

We can now give an expression for LB
S
(
a, b̃

)
(using Property 5):

[
LB

S
(
a, b̃

)]
i,j

=
[
LT

S
(
a, b̃

)]
i,j
− 1

q

=
1

q
Tr
(
Pj × T

LT
S

(
a23, b̃23

)
× Pi × LT

S

(
a01, b̃01

))
− 1

q

=
1

q
Tr
(
Pj × T

LT
S

(
a23, b̃23

)
× Pi × LT

S

(
a01, b̃01

)
−U

)

=
1

q
Tr
(
Pj × T

LB
S

(
a23, b̃23

)
× Pi × LB

S

(
a01, b̃01

))

Thus:

[
LB

S
(
a, b̃

)]
i,j

=
1

q
Tr
(
Pj × T

LB
S

(
a23, b̃23

)
× Pi × LB

S

(
a01, b̃01

))
(III.4)

6.2 Conclusions of the study

We have seen that the transition matrix of on round of the cipher can be written in
the following way:
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LT
R
F16/Fq

(a,b) = Pk × LT
S
F16/Fq

(
a, b̃

)
.

When only one S-box of the round is active, for example when

a =




a0

a1

0
0


 and b =




b0
0
b2
0


 ,

then this equations becomes

LT
R
F16/Fq

(a,b) = Pk × LT
Si
F16/Fq

(
a, b̃

)
.

When both S-boxes are active, we obtain:

[
LT

S
(
a, b̃

)]
i,j

=
1

q
Tr
(
Pj × T

LT
S

(
a23, b̃23

)
× Pi × LT

S

(
a01, b̃01

))
,

which leads to

[
LB

S
(
a, b̃

)]
i,j

=
1

q
Tr
(
Pj × T

LB
S

(
a01, b̃01

)
× Pi × LB

S

(
a01, b̃01

))
.

From this study we also conclude that

LB
R
F16/Fq

(a,b) = Pk × LB
S
F16/Fq

(
a, b̃

)
,

and thus that

‖ LB
R
F16/Fq

(a,b) ‖2=‖ LB
S
F16/Fq

(
a, b̃

)
‖2 ,

So finding the best mask on one round of the cipher is equivalent to finding the best
mask on the S-box layer of the cipher, which is in turn equivalent to finding the
best mask on the S-box when only one is active. If both S-boxes are active, we have
provided a formula that gives the value of the transition matrix of the S-box layer
given the transition matrix of the S-box.

7 Piling-up rounds

7.1 Piling-up two rounds

We consider here two successive rounds R(r) and R(r+1). The previous study per-
mits to find the transition matrix of R(r) and the transition matrix of R(r+1), both
according the the corresponding subkeys kk and kr+1. We have :

LT
R(r)

F16/Fq

(
a(r),a(r+1)

)
= Pkr × LT

S(r)

F16/Fq

(
a(r), ã(r+1)

)
,

LT
R(r+1)

F16/Fq

(
a(r+1),a(r+2)

)
= Pkr+1 × LT

S(r+1)

F16/Fq

(
a(r+1), ã(r+2)

)
.
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Using Property 1, the transition matrix on two rounds is thus :

LT
R(r+1)◦R(r)

F16/Fq

(
a(r),a(r+2)

)
= Pkr × LT

S(r)

F16/Fq

(
a(r), ã(r+1)

)

× Pkr+1 × LT
S(r+1)

F16/Fq

(
a(r+1), ã(r+2)

)
.

Using Property 5, this leads to

LB
R(r+1)◦R(r)

F16/Fq

(
a(r),a(r+2)

)
= Pkr × LB

S(r)

F16/Fq

(
a(r), ã(r+1)

)

× Pkr+1 × LB
S(r+1)

F16/Fq

(
a(r+1), ã(r+2)

)
.

What we are interested in is ‖ LB
R(r+1)◦R(r)

F16/Fq

(
a(r),a(r+1)

)
‖22 as this is a measure on

the efficency of the chosen mask for generalized linear cryptanalysis. This is where
the generalized piling-up lemma becomes useful. Whereas Pkr+1 and Pkr cannot be
any permutation matrix, we will consider that the Theorem 11 holds anyhow. Thus,
we will consider that:

‖ LB
R(r+1)◦R(r)

F16/Fq

(
a(r),a(r+2)

)
‖22

≈ 1

q − 1
‖ LB

S(r)

F16/Fq

(
a(r), ã(r+1)

)
‖22 · ‖ LB

S(r+1)

F16/Fq

(
a(r+1), ã(r+2)

)
‖22

7.2 Piling-up several rounds

Piling-up several rounds is just as easy as piling-up two rounds several times. In
order to apply generalized linear cryptanalysis, we need a good approximation on
the first 3 rounds of the cipher followed by the fourth round key. We simply denote
LBF16/Fq

the corresponding bias matrix. We have:

LBF16/Fq
(a,b) = Pk4 × LB

R(3)◦R(2)◦R(1)

F16/Fq
(a,b)

= Pk4 ×
(

3∏

r=1

LB
R(r)

F16/Fq

(
a(r),a(r+1)

))
,

with a(1) = a and a(4) = b. Applying the piling-up lemma several times, we obtain:
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‖ LBF16/Fq
(a,b) ‖22 = ‖

3∏

r=1

LB
R(r)

F16/Fq

(
a(r),a(r+1)

)
‖22

= ‖
3∏

r=1

Pkr × LB
S(r)

F16/Fq

(
a(r), ã(r+1)

)
‖22

= ‖ LB
S(1)

F16/Fq

(
a(1), ã(2)

)

×
3∏

r=2

Pkr × LB
S(r)

F16/Fq

(
a(r), ã(r+1)

)
‖22

≈
(

1

q − 1

)2 3∏

r=1

‖ LB
S(r)

F16/Fq

(
a(r), ã(r+1)

)
‖22 .

Finally, with a(1) = a and a(4) = b:

‖ LB (a,b) ‖22 ≈
(

1

q − 1

)2

‖ LB
S(1)
(
a(1), ã(2)

)
‖22

· ‖ LB
S(2)
(
a(2), ã(3)

)
‖22 · ‖ LB

S(3)
(
a(3), ã(4)

)
‖22 .

In the case where we can manage to have only one active substitution box per round,
this equation becomes:

‖ LB (a,b) ‖22 ≈
(

1

q − 1

)2

‖ LB
S1

(
a(1), ã(2)

)
‖22

· ‖ LB
S2

(
a(2), ã(3)

)
‖22 · ‖ LB

S2

(
a(3), ã(4)

)
‖22 .

In the last equation we made a slight abuse of notation. When computing ‖
LB

S1
(
a(1), ã(2)

)
‖22 for example, we only consider the two non zero coordinates of

a(1) and ã(2) to obtain a mask on the active substitution box.

8 Finding the best path

We have to find a path, i.e. a sequence of input/output masks a = a(1) → a(2) →
a(3) → a(4) = b such that the value of n(a,b) =‖ LBF16/Fq

(a,b) ‖−2
2 is minimum.

Finding such a sequence is not a trivial problem. A possible strategy was proposed by
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Matsui (see [Mat94b]) and then improved by Otha, Moriai and Aoki (see [OMA95]).
Their solution applies well to a cipher following a Feistel scheme, which is not the
case here. Thus, we propose an alternative. Algorithm 8 gives an efficient way to
find the best possible characteristic on our cipher.

Parameters: The number of rounds rtot. A list
(
n

(1)
min, . . . , n

(rtot)
min

)
, where all entry cor-

respond to the approximate number of queries allowed for a particular round. An interval
length δ.

main():

1: for each a(1) do

2: call sub(1)

3: end for

4: /* If this line is reach, no characteristic has been found */

5: Exit

sub(r):

1: for each a(r+1) do

2: if n(a(r),a(r+1)) ∈ [n
(r)
min;n

(r)
min + δ[ then

3: if r = rtot then

4: Display
(
a(1),a(2), . . . ,a(r)

)
and

(
n(a(1),a(2)), . . . , n(a(r),a(r+1))

)
and Exit

5: else

6: call sub(r + 1)

7: end if

8: end if

9: end for

Algorithm 8: Finding the best characteristic

Remember that the objective is to find the characteristic such that the value of∏rtot
r=1 n(a

(r),a(r+1)) is minimal. Notice that on one round r, the number of ques-
tions n(a(r),a(r+1)) is always smaller than the minimum number of questions on one
substitution box (say nS-box). The key of this algorithm is to determine the initial

values n
(1)
min, . . . , n

(r)
min. Before we explain how to determine them, some clarification

on the algorithm.

During the execution of sub(r), we search for the output mask a(r+1) of round r.
The only masks that are accepted by the algorithm are those such that n(a(r),a(r+1)) ≈
n

(r)
min. If such a mask is accepted, then procedure sub is called recursively, unless the

searched mask was the last (i.e. we were looking for b) which implies that we found
the characteristic.

Here is how to choose n
(1)
min, . . . , n

(r)
min in order to find the best characteristic. First
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K̃2
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K̃4
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ã
(2)
0ã
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(2)
3

ã
(3)
0ã

(3)
1ã
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2ã

(3)
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ã(3)

a(3)

a(3)

ã(4)
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a
(3)
0a

(3)
1a

(3)
2a

(3)
3

ã
(4)
0ã

(4)
1ã

(4)
2ã

(4)
3

Figure III.9: Path through the cipher
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we initialize each of these values to nS-box, the minimum number of questions on the
substitution box. The we start the algorithm. If it finds a characteristic, we know

it is the best. If it does not, we must increment one of the n
(i)
min’s in order to search

through different branches. If the search succeeds, we know the characteristic is the

best as
∏rtot

r=1 n(a
(r),a(r+1)) ≈ ∏rtot

r=1 n
(r)
min and as no characteristic can be found for

smaller values of the n
(i)
min’s. If the search gives no result, we try all possible permu-

tations of the values of n
(i)
min’s. If again, no result is found, we iterate. Algorithm 9

gives in a more formal way the method used to find the good initial values of the

n
(i)
min’s.

Using this algorithm, we found the two following best paths:

• (0x0200, 0x4080) in F2 with n(a, b) ≈ 475′000. The path found is the following:

(a(1),a(2),a(3),a(4)) = (0x0200, 0x0010, 0x0200, 0x4080) .

• (0x5000, 0x0004) in F4 with n(a, b) ≈
(

1
3

)2 ∗ 3800 ≈ 422. The path found is
the following:

(a(1),a(2),a(3),a(4)) = (0x5000, 0x0010, 0x0005, 0x0004) .

9 And what was that all about?

After the results we have just presented, we decided to experiment our cryptanaly-
sis on the cipher. Unfortunately, linear cryptanalysis (as well classic as generalized)
in ineffective in the present case. Concretely, independently of number of plain-
text/ciphertext couples at our disposal, the rank of the good subkey in the sorted
list of all possible subkey for the last round is always too high (although it decreases
as the number of couples increases). It is thus necessary to test un high num-
ber of wrong key before the good one is discovered. Even when using all possible
plaintext/ciphertext couples (i.e. 216 couples), the good subkey is not necessar-
ily at the first position, which means that the cryptanalysis is not better than an
exhaustive key search. These bad results are due to the excellent quality of AES
substitution boxes against linear cryptanalysis and to the low number of possible
plaintext/ciphertext couples at our disposal.

Can we conclude that our generalization of linear cryptanalysis is useless ? When a
cipher is strong against linear cryptanalysis, is it automatically strong against our
generalization ? In the next section we investigate both questions.

10 On the limitations of this generalization

In this section, we prove a result that seems to show that somehow, the power of
generalized cryptanalysis (as we defined it) is limited when the power of classical
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find initial values():

1: A ← ((nS-box, . . . , nS-box))

2: B ← ∅
3: do

4: for each element
(
n

(1)
min, . . . , n

(rtot)
min

)
∈ A do

5: for each permutation σ of the set {1, 2, . . . , rtot} do

6: if
(
n

(σ(1))
min , . . . , n

(σ(rtot))
min

)
/∈ B then

7: B ← B ∪
(
n

(σ(1))
min , . . . , n

(σ(rtot))
min

)

8: end if

9: end for

10: end for

11: for each element
(
n

(1)
min, . . . , n

(rtot)
min

)
∈ B do

12: Search of a characteristic with initial values
(
n

(σ(1))
min , . . . , n

(σ(rtot))
min

)

13: end for

14: A ← next set(A)
15: B ← ∅
16: while no characteristic has been found

next set(A):
1: for each element

(
n

(1)
min, . . . , n

(rtot)
min

)
∈ A do

2: A ← A \
(
n

(1)
min, . . . , n

(rtot)
min

)

3: for each i ∈ {1, . . . , rtot − 1} do

4: if n
(i)
min + δ ≤ n

(i+1)
min do

5: A ← A∪
(
n

(1)
min, . . . , n

(i)
min + δ, n

(i+1)
min , . . . , n

(rtot)
min

)

6: end if

7: Sort A by increasing value of
∏rtot

i=1 n
(i)
min

8: end for

9: end for

Algorithm 9: Finding the best initial values for the search for the best character-
istic
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linear cryptanalysis is limited.

Theorem 15. Consider a permutation C over {0, 1}n. Let LT
C
F2m/F2n

(a, b) be the
transition matrix defined by
[
LT

C
F2m/F2n

(a, b)
]
x,y

= PrZ∈F2m

[
TrF2m/F2n

(bC(Z)) = y | TrF2m/F2n
(aZ) = x

]

such that n > 1 and such that n divides m. Let εx,y be the x, y entry of the cor-
responding bias matrix. If there exists some B > 0 such that for all a, b ∈ F∗2 we
have (

2PrZ∈F2m

[
TrF2m/F2

(aZ) = TrF2m/F2
(bC(Z))

]
− 1
)2 ≤ B (III.5)

then ∑

x,y∈F2n

ε2x,y ≤ 22nB .

Proof. If equation (III.5) is true, we also have:

(
2PrZ∈F2m

[
TrF2m/F2

(αaZ) = TrF2m/F2
(βbC(Z))

]
− 1
)2 ≤ B

for all α, β ∈ F2n . Using the transitivity of the trace (see Theorem 9), this implies:

(
2PrZ∈F2m

[
TrF2n/F2

(
TrF2m/F2n

(αaZ)
)
= TrF2n/F2

(
TrF2m/F2n

(βbC(Z))
)]
− 1
)2 ≤ B

Using Theorem 8, as α and β are elements of F2n , we have:

(
2PrZ∈F2m

[
TrF2n/F2

(
αTrF2m/F2n

(aZ)
)
= TrF2n/F2

(
βTrF2m/F2n

(bC(Z))
)]
− 1
)2 ≤ B

Considering the probabilistic part of the last equation, we have:

PrZ∈F2m

[
TrF2n/F2

(
αTrF2m/F2n

(aZ)
)
= TrF2n/F2

(
βTrF2m/F2n

(bC(Z))
)]

=
∑

z∈F2m

1
TrF2n/F2(αTrF2m/F2n

(az))=TrF2n/F2(βTrF2m/F2n
(bC(z)))Pr [Z = z]

=
1

2m

∑

z∈F2m

∑

x,y∈F2n

1TrF2n/F2
(αx)=TrF2n/F2

(βy) 1 x=TrF2m/F2n
(az)

y=TrF2m/F2n
(bC(z))

=
1

2m

∑

x,y∈F2n

1TrF2n/F2
(αx)=TrF2n/F2

(βy)

∑

z∈F2m

1 x=TrF2m/F2n
(az)

y=TrF2m/F2n
(bC(z))

Noticing that

PrZ∈F2m

[
TrF2m/F2n

(bC(Z)) = y,TrF2m/F2n
(aZ) = x

]
=

1

2m

∑

z∈F2m

1 x=TrF2m/F2n
(az)

y=TrF2m/F2n
(bC(z))
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we have:

PrZ∈F2m

[
TrF2n/F2

(
αTrF2m/F2n

(aZ)
)
= TrF2n/F2

(
βTrF2m/F2n

(bC(Z))
)]

=
1

2n

∑

x,y∈F2n

1TrF2n/F2
(αx)=TrF2n/F2

(βy)

[
LT

C
F2m/F2n

(a, b)
]
x,y

Going back to the initial expression, we thus obtain:


 2

2n

∑

x,y∈F2n

1TrF2n/F2
(αx)=TrF2n/F2

(βy)

[
LT

C
F2m/F2n

(a, b)
]
x,y
− 1




2

≤ B (III.6)

Noticing that

1i=j =
(−1)i+j + 1

2

for i, j ∈ F2 we can compute the preceeding sum:

∑

x,y∈F2n

1TrF2n/F2
(αx)=TrF2n/F2

(βy)

[
LT

C
F2m/F2n

(a, b)
]
x,y

=
∑

x,y∈F2n

1

2

(
(−1)TrF2n/F2

(αx)+TrF2n/F2
(βy) + 1

) [
LT

C
F2m/F2n

(a, b)
]
x,y

=
1

2

∑

x,y∈F2n

(−1)TrF2n/F2
(αx)+TrF2n/F2

(βy)
[
LT

C
F2m/F2n

(a, b)
]
x,y

+
2n

2

Considering the last equality and equation (III.6), we obtain:


 1

2n

∑

x,y∈F2n

(−1)TrF2n/F2
(αx)+TrF2n/F2

(βy)
[
LT

C
F2m/F2n

(a, b)
]
x,y




2

≤ B (III.7)

We can develop the left term of equation (III.7) (remember that + and − are equiv-
alent in F2):
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
 1

2n

∑

x,y∈F2n

(−1)TrF2n/F2
(αx)+TrF2n/F2

(βy)
[
LT

C
F2m/F2n

(a, b)
]
x,y




2

=
1

22n

∑

x,y∈F2n

∑

x′,y′∈F2n

(−1)TrF2n/F2
(αx)+TrF2n/F2

(βy)(−1)TrF2n/F2
(αx′)+TrF2n/F2

(βy′)

[
LT

C
F2m/F2n

(a, b)
]
x,y

[
LT

C
F2m/F2n

(a, b)
]
x′,y′

=
1

22n

∑

x,y∈F2n

∑

x′,y′∈F2n

(−1)TrF2n/F2
(αx)+TrF2n/F2

(βy)−TrF2n/F2
(αx′)−TrF2n/F2

(βy′)

[
LT

C
F2m/F2n

(a, b)
]
x,y

[
LT

C
F2m/F2n

(a, b)
]
x′,y′

=
1

22n

∑

x,y∈F2n

∑

x′,y′∈F2n

(−1)TrF2n/F2
(α(x−x′))+TrF2n/F2

(β(y−y′))

[
LT

C
F2m/F2n

(a, b)
]
x,y

[
LT

C
F2m/F2n

(a, b)
]
x′,y′

We can notice that:

∑

α,β∈F2n

(−1)TrF2n/F2
(α(x−x′))+TrF2n/F2

(β(y−y′)) =

{
22n when x = x′ and y = y′

0 otherwise.

So that:

∑

α,β∈F2n


 1

2n

∑

x,y∈F2n

(−1)TrF2n/F2
(αx)+TrF2n/F2

(βy)
[
LT

C
F2m/F2n

(a, b)
]
x,y




2

=
∑

x,y∈F2n

[
LT

C
F2m/F2n

(a, b)
]2
x,y

The last equality and equation (III.7) give:

∑

x,y∈F2n

[
LT

C
F2m/F2n

(a, b)
]2
x,y
≤ 22nB (III.8)

We are almost done. We have:
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∑

x,y∈F2n

ε2x,y

=
∑

x,y∈F2n

([
LT

C
F2m/F2n

(a, b)
]
x,y
− 1

2n

)2

=
∑

x,y∈F2n

[
LT

C
F2m/F2n

(a, b)
]2
x,y
− 2

2n

∑

x,y∈F2n

[
LT

C
F2m/F2n

(a, b)
]
x,y

+
∑

x,y∈F2n

1

22n

=
∑

x,y∈F2n

[
LT

C
F2m/F2n

(a, b)
]2
x,y
− 1

Using equation (III.8) we obtain:

∑

x,y∈F2n

ε2x,y ≤ 22nB

which finishes this (long) proof.

The preceeding theorem proves that when a cipher is strong against linear crypt-
analysis, that is when the value of

(
2PrZ∈F2m

[
TrF2m/F2

(aZ) = TrF2m/F2
(bC(Z))

]
− 1
)2

is low, it makes sure that the value of

∑

x,y∈F2n

ε2x,y

is also relatively low. Given the definition of the transition matrices used in this
study (see Chapter II, Definition 11), this also means that the cipher is strong against
generalized cryptanalysis (but to a lesser extent). But the range of application of
Theorem 15 is limited to this particular definition. It would be sufficient to define
the transition matrices in some other way in order to leave its range of applicability.
In the next chapter we give an example of such transition matrices.
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Chapter IV

Further improvements and
Conclusion

1 On the universality of our generalization

1.1 A new kind of transition matrices

At the beginning of chapter II we decide to use specific types of transition matrices
(although some of the results of the chapter hold of any kind of transition matrices).
Namely we defined q × q transition matrices in the following way:

[
LT

f
Fqm/Fq

(a, b)
]
i,j

= PrX∈Fqm

[
TrFqm/Fq (bf(X)) = j|TrFqm/Fq (aX) = i

]
,

where f is function over Fqm and a, b are elements of F∗qm . This choice, although not
completely arbitrary, can be changed by something more appropriate. For example,
an easy way to eliminate the problem of the limitation proved in Theorem 15 is to
make use of what we call differential linear transition matrices:

[
∆LT

f
Fqm/Fq

]
i,j

= PrX1,X2 ∈ Fqm [ψ(Y2 ⊕ Y1) = j | φ(X2 ⊕X1) = i] ,

where ψ and φ are linear functions from Fqm onto Fq, where Yi = f(Xi) and where
the Xi’s independent and uniformly distributed. We consider the configuration
represented on Figure IV.1.
We have:

Yi = f(Xi) = C(Xi ⊕K)

where K represent a fixed subkey, and C a fixed permutation over Fqm . In order to
simplify notations, we can consider that φ = ψ. Typically, f represents a round a
block cipher. We can easily prove that differential linear transition matrix does not
depend on K:

X2 ⊕X1 = (U2 ⊕K)⊕ (U1 ⊕K)

= U2 ⊕ U1 .
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C

K

Y1, Y2

X1, X2

U1, U2

Figure IV.1: Application of differential linear transition matrices

Thus:

[
∆LT

f
Fqm/Fq

]
i,j

= PrX1,X2 ∈ Fqm [ψ(Y2 ⊕ Y1) = j | ψ(U2 ⊕ U1) = i]

=
[
∆LT

C
Fqm/Fq

]
i,j

.

We see that the subkeys will be discarded in the computation of the differential linear
transition matrix of one round, which will thus only depend on the permutation C.
Consider two rounds represented on Figure IV.2.
We have:

[
∆LT

R(2)◦R(1)

Fqm/Fq

]
i,j

= PrX1,X2 [ψ(Y2 ⊕ Y1) = j | ψ(X2 ⊕X1) = i]

= q PrX1,X2 [ψ(Y2 ⊕ Y1) = j, ψ(X2 ⊕X1) = i]

=
∑

k∈Fq

PrX1,X2 [ψ(Y2 ⊕ Y1) = j, ψ(X2 ⊕X1) = i | ψ(Z2 ⊕ Z1) = k]

We suppose that the chain ψ(X2 ⊕ X1) → ψ(Z2 ⊕ Z1) → ψ(Y2 ⊕ Y1) is a Markov
chain (just as we did in chapter II, Property 1), we obtain:

71



C

X1, X2

K(1)

K(2)

C

Y1, Y2

Z1, Z2

Figure IV.2: Differential linear transition matrix on two rounds

[
∆LT

R(2)◦R(1)

Fqm/Fq

]
i,j

=
∑

k∈Fq

Pr [ψ(Y2 ⊕ Y1) = j | ψ(Z2 ⊕ Z1) = k]

Pr [ψ(X2 ⊕X1) = i | ψ(Z2 ⊕ Z1) = k]

=
∑

k∈Fq

Pr [ψ(Y2 ⊕ Y1) = j | ψ(Z2 ⊕ Z1) = k]

Pr [ψ(Z2 ⊕ Z1) = k | ψ(X2 ⊕X1) = i]

=
∑

k∈Fq

[
∆LT

R(2)

Fqm/Fq

]
k,j

[
∆LT

R(1)

Fqm/Fq

]
i,k

And thus:

∆LT
R(2)◦R(1)

Fqm/Fq
= ∆LT

R(1)

Fqm/Fq
×∆LT

R(2)

Fqm/Fq
.

As we know that the differential linear transition matrix on one round does only
depend on C, we obtain:

∆LT
R(2)◦R(1)

Fqm/Fq
=
(
∆LT

C
Fqm/Fq

)2
. (IV.1)

Since the first chapter, we know that the efficiency of such a transition matrix is
given by the norm of the corresponding bias matrix. We have:
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‖ ∆LB
R(2)◦R(1)

Fqm/Fq
‖2 = ‖ ∆LT

R(2)◦R(1)

Fqm/Fq
−U ‖2

= ‖
(
∆LT

C
Fqm/Fq

)2
−U ‖2

= ‖
(
∆LT

C
Fqm/Fq

−U

)2
‖2

= ‖
(
∆LB

C
Fqm/Fq

)2
‖2 ,

using Property 4.

We see that the transition matrix on several rounds does not depend on the subkeys,
which is a good thing as the matrix we want to obtain should work with just the same
efficiency regardless of the key that was used to crypt the plaintexts. Nevertheless,
we still need a generalization of the piling-up lemma here, as we did not express
the norm of the bias matrix on several rounds in function of the norm of the bias
matrices of each individual round.

1.2 Some interesting properties

Going back on the definitions of the transition matrices LT and ∆LT, we will consider
in this paragraph that

[
LT

C
Fqm/Fq

(a, b)
]
i,j

= PrX∈Fqm [Tr (bC(X)) = j|Tr (aX) = i] ,

and that

[
∆LT

C
Fqm/Fq

(a, b)
]
i,j

= PrX1,X2 ∈ Fqm [Tr (b(Y2 ⊕ Y1)) = j | Tr (a(X2 ⊕X1)) = i] ,

with the usual notations. In other words we consider that φ and ψ correspond to
the trace function. In this particular case, some interesting properties can be found.

Property 8. For i, j ∈ Fq we have:

[
∆LT

C
Fqm/Fq

(a, b)
]
i,j

=
1

q

∑

l,k∈Fq

[
LT

C
Fqm/Fq

(a, b)
]
l,k

[
LT

C
Fqm/Fq

(a, b)
]
l+i,k+j

Proof. In order to simplify notations, we simply write ∆LT instead of ∆LT
C
Fqm/Fq

(a, b)

and LT instead of LT
C
Fqm/Fq

(a, b). We also drop the subscript on the trace function.

We have:
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[∆LT]i,j

= q Pr [Tr (b(Y2 ⊕ Y1)) = j , Tr (a(X2 ⊕X1)) = i]

=
∑

l∈Fq

Pr [Tr (b(Y2 ⊕ Y1)) = j , Tr (a(X2 ⊕X1)) = i | Tr (X1) = l]

= q
∑

l∈Fq

Pr [Tr (b(Y2 ⊕ Y1)) = j , Tr (a(X2 ⊕X1)) = i , Tr (aX1) = l]

=
∑

l,k∈Fq

Pr [Tr (b(Y2 ⊕ Y1)) = j , Tr (a(X2 ⊕X1)) = i ,

Tr (aX1) = l | Tr (bY1) = k]

= q
∑

l,k∈Fq

Pr [Tr (bY2) = k + j , Tr (aX2) = l + i ,

Tr (aX1) = l , Tr (bY1) = k]

=
1

q

∑

l,k∈Fq

Pr [Tr (bY1) = k | Tr (aX1) = l]

Pr [Tr (bY2) = k + j | Tr (aX2) = l + i]

which concludes the proof.

An another interesting remark is the following:

Property 9. We the usual notations, we have:

‖ ∆LB
C
Fqm/Fq

(a, b) ‖2 ≤ ‖ LT
C
Fqm/Fq

(a, b) ‖22 .

Proof. As in the precedent proof, we decide to simplify the notations. Using Prop-
erty 8 we obtain:

[∆LB]i,j = [∆LT]i,j −
1

q

=
1

q

∑

l,k

(
[LT]l,k [LT]l+i,k+j −

1

q2

)
.

Thus:
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q2 ‖ ∆LB ‖22 =
∑

i,j


∑

l,k

(
[LT]l,k [LT]l+i,k+j −

1

q2

)


2

=
∑

i,j

∑

l,k

∑

l′,k′

(
[LT]l,k [LT]l+i,k+j −

1

q2

)(
[LT]l′,k′ [LT]l′+i,k′+j −

1

q2

)

=
∑

i,j

∑

l,k

∑

l′,k′

[LT]l,k [LT]l+i,k+j [LT]l′,k′ [LT]l′+i,k′+j − q2 (IV.2)

We also have:

∑

l,k

[LT]l,k [LT]l+i,k+j −
1

2
‖ LT ‖22=

1

2

∑

l,k

(
2 [LT]l,k [LT]l+i,k+j − [LT]2l,k

)
(IV.3)

As

0 ≥
(
[LT]l,k − [LT]l+i,k+j

)2
= [LT]2l,k − 2 [LT]l,k [LT]l+i,k+j + [LT]2l+i,k+j ,

equation (IV.3) becomes:

∑

l,k

[LT]l,k [LT]l+i,k+j −
1

2
‖ LT ‖22 ≥ 1

2

∑

l,k

[LT]2l+i,k+j

=
1

2
‖ LT ‖22

and thus:

∑

l,k

[LT]l,k [LT]l+i,k+j ≥ ‖ LT ‖22 . (IV.4)

From equations (IV.2) and (IV.4) we obtain:

q2 ‖ ∆LB ‖22 ≤ q2 ‖ LT ‖42 −q2
≤ q2 ‖ LT ‖42

which concludes the proof.

We have to admit that those results, apart from making the link between two the-
ories, are not very useful when comes the time of cryptanalysis. But they may be
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a start for finding some theory that (for example) would make use of both defini-
tions in order to generalize the piling-up lemma. The aim was also to show that the
transition matrices we defined in Chapter II are not unique, and can be replaced an
another type of transition matrices.

Finding the best type of transition matrix for a particular cipher is the starting
point for studies of great interest !

2 Conclusion

In this diploma work, we expose several ideas that generalize Matsui’s linear crypt-
analysis. Whether some generalizations had already been done, none of them pro-
posed a way to widen the space cardinal of the linear expressions, which is our
proposal. Following this idea we replace linear expressions by linear transition ma-
trices. A critical measure on linear expression is the notion of bias. The study on
distinguishers we make in chapter I allows us to extend it, giving a similar measure
on transition matrices. All the results given in chapter I and some results given
in chapter II are true regardless the exact definition of the transition matrix (see
section 1 for more details). The only assumption is that the matrices are transition
matrices (i.e. that their lines and columns sum to 1).

From that point, we made the choice of restricting the study to specific types of
transition matrices. More precisely, we defined a specific type of transition matrices
using the trace operator on finite fields. This operator is an elegant way to generalize
the notion of scalar product. Still in chapter II we tried to generalize one of the
central notions of linear cryptanalysis, the piling-up lemma. The generalization we
propose is of course linked to the exact definition of the transition matrices we are
using and thus to the trace function.

Finally, in chapter III, we use the tools of the past chapters to cryptanalyze a simple
cipher. We show how to find a transition matrix on several rounds of the cipher,
given the transition matrices on the individual rounds, using the generalization of
the piling-up lemma. We also take a look at an another complex problem faced by
the cryptanalyst, namely how to find the transition matrices on individual rounds
such that a transition matrix on several rounds can indeed be derived.

The theory we have presented here is general enough to open new doors on very
exciting future work. We give some examples in the present chapter . . .
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