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Presentation of the cipher (1)

Presentation based on a symmetric-key block cipher.

Inspired from a tutorial from Howard M. Heys.
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Presentation of the cipher (1)

Presentation based on a symmetric-key block cipher.

Inspired from a tutorial from Howard M. Heys.

Invertible function, mapping a 16-bits plaintext block P to a 16-bits

ciphertext block C.

Our block cipher is a simple SPN, made of 3 identical rounds, followed

by an additional round.
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Presentation of the cipher (2)

K(r)

SS

One round of the cipher:

• Key-xoring

• Substitution-box (from AES)

• Permutation
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Presentation of the cipher (3)

Key xoring:

X15 X14 X0

X15 X14 X0

Y15 Y14 Y0

Y15 Y14 Y0

K15 K14 K0

K

≡

A generalization of Linear Cryptanalysis ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

5



Presentation of the cipher (4)

Substitution Box:

Permutation applied to one byte.

0x00
S

−−−−−−−−→ 0x63

0x01
S

−−−−−−−−→ 0x7c
... ... ...
... ... ...

0xff
S

−−−−−−−−→ 0x16
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Presentation of the cipher (4)

Substitution Box:

Permutation applied to one byte.

0x00
S

−−−−−−−−→ 0x63

0x01
S

−−−−−−−−→ 0x7c
... ... ...
... ... ...

0xff
S

−−−−−−−−→ 0x16

This is the only non-linear transformation of the round.
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Presentation of the cipher (5)

K
(1)

K
(2)

K
(3)

K
(4)

K
(5)

S S

S

SS

S

SS

X
(1)

Y
(1) = X

(2)

Y
(2) = X

(3)

Y
(3) = X

(4)

Z
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Linear Cryptanalysis of the cipher (1)

(Short) Historical review:

• Linear cryptanalysis is a statistical attack presented in 1993 by

Matsui.
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Linear Cryptanalysis of the cipher (1)

(Short) Historical review:

• Linear cryptanalysis is a statistical attack presented in 1993 by

Matsui.

• It is a known-plaintext attack:

The cryptanalyst has access to the ciphertext of several

messages, and to the plaintext of those messages.

• Refined version in 1994 which allowed to break DES.

• Statistical part optimized by Pascal Junod and Serge Vaudenay

in 2003.
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Linear Cryptanalysis of the cipher (2) - First phase

Objective : Find an linear expression that approximates 3 rounds of

the cipher.
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Linear Cryptanalysis of the cipher (2) - First phase

Objective : Find an linear expression that approximates 3 rounds of

the cipher.

a · P︸ ︷︷ ︸

one bit

⊕ b · Z︸ ︷︷ ︸

one bit

= 0 a =








a0
a1
...

a15








b =








b0
b1
...

b15








with ai ∈ {0,1} and bj ∈ {0,1} for all i, j.

The operator · is the inner-dot product:

a · P = a0P0 ⊕ a1P1 ⊕ · · · ⊕ a15P15
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Linear Cryptanalysis of the cipher (3) - First phase

Objective : Find an effective linear expression that approximates 3

rounds of the cipher.
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Linear Cryptanalysis of the cipher (3) - First phase

Objective : Find an effective linear expression that approximates 3

rounds of the cipher.

a · P︸ ︷︷ ︸

one bit

⊕ b · Z︸ ︷︷ ︸

one bit

= 0

If the linear expression holds with probability p, the value

ε =

∣
∣
∣
∣p−

1

2

∣
∣
∣
∣

must be far from 0. This is the bias of the linear expression.
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Linear Cryptanalysis of the cipher (4) - First phase

Question: How do we find such an expression ?
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Linear Cryptanalysis of the cipher (4) - First phase

Question: How do we find such an expression ?

Non-linear transformations of the cipher: the substitution boxes.

S

U0U1U2U3U4U5U6U7

V0V1V2V3V4V5V6V7

Find a linear expression a ·U⊕ b ·V = 0 on the S-box,

with a large bias.
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Linear Cryptanalysis of the cipher (5) - First phase

Example:

S

U0U1U2U3U4U5U6U7

V0V1V2V3V4V5V6V7

U1 ⊕ U5 ⊕ V3 = 0
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Linear Cryptanalysis of the cipher (5) - First phase

Example:

S

U0U1U2U3U4U5U6U7

V0V1V2V3V4V5V6V7

U1 ⊕ U5 ⊕ V3 = 0

Set c to 0. For every input U, increment c if the equation holds.

p =
c

28

The equation is effective if ε =
∣
∣
∣p− 1

2

∣
∣
∣ is far from 0.
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Linear Cryptanalysis of the cipher (6) - First phase

Suppose that the following equations have a large bias:

U1 ⊕ U5 ⊕ V3 = 0 ε1

U12 ⊕ V15 = 0 ε2

S S

U0U1U2U3U4U5U6U7U9 U8U11U12 U10U13U14U15

V15 V14 V13 V12 V11 V10 V9 V8 V1 V0V2V3V4V5V6V7

How do we find an expression on the whole S-box layer ?
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Linear Cryptanalysis of the cipher (6) - First phase

Suppose that the following equations have a large bias:

U1 ⊕ U5 ⊕ V3 = 0 ε1

U12 ⊕ V15 = 0 ε2

S S

U0U1U2U3U4U5U6U7U9 U8U11U12 U10U13U14U15

V15 V14 V13 V12 V11 V10 V9 V8 V1 V0V2V3V4V5V6V7

How do we find an expression on the whole S-box layer ?

Using the piling-up lemma.

A generalization of Linear Cryptanalysis ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

13-a



Linear Cryptanalysis of the cipher (7) - First phase

U1 ⊕ U5 ⊕ V3 = 0 ε1

U12 ⊕ V15 = 0 ε2
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Linear Cryptanalysis of the cipher (7) - First phase

U1 ⊕ U5 ⊕ V3 = 0 ε1

U12 ⊕ V15 = 0 ε2

Then bias of

U1 ⊕ U5 ⊕ U12 ⊕ V3 ⊕ V15 = 0

is

ε = 2ε1ε2
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Linear Cryptanalysis of the cipher (7) - First phase

U1 ⊕ U5 ⊕ V3 = 0 ε1

U12 ⊕ V15 = 0 ε2

Then bias of

U1 ⊕ U5 ⊕ U12 ⊕ V3 ⊕ V15 = 0

is

ε = 2ε1ε2

We know how to find effective linear expressions on the S-box layer.
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Linear Cryptanalysis of the cipher (8) - First phase

Going through the permutation is easy. . .

SS

U

V

U12 U1U5

Y15 Y12

Y

U1 ⊕ U5 ⊕ U12 ⊕ V3 ⊕ V15 = 0 ε
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Linear Cryptanalysis of the cipher (8) - First phase

Going through the permutation is easy. . .

SS

U

V

U12 U1U5

Y15 Y12

Y

U1 ⊕ U5 ⊕ U12 ⊕ V3 ⊕ V15 = 0 ε

becomes

U1 ⊕ U5 ⊕ U12 ⊕ Y12 ⊕ Y15 = 0 ε
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Linear Cryptanalysis of the cipher (9) - First phase

Going through the subkey layer. . .

SS

Y

U

V

Y15 Y12

X

X12 X5 X1

K
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Linear Cryptanalysis of the cipher (9) - First phase

Going through the subkey layer. . .

SS

Y

U

V

Y15 Y12

X

X12 X5 X1

K

U1 ⊕ U5 ⊕ U12 ⊕ Y12 ⊕ Y15 = 0 ε

⇒ X1 ⊕X5 ⊕X12 ⊕ Y12 ⊕ Y15 = K1 ⊕K5 ⊕K12 ε
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Linear Cryptanalysis of the cipher (9) - First phase

Going through the subkey layer. . .

SS

Y

U

V

Y15 Y12

X

X12 X5 X1

K

U1 ⊕ U5 ⊕ U12 ⊕ Y12 ⊕ Y15 = 0 ε

⇒ X1 ⊕X5 ⊕X12 ⊕ Y12 ⊕ Y15 = K1 ⊕K5 ⊕K12 ε

⇒ X1 ⊕X5 ⊕X12 ⊕ Y12 ⊕ Y15 = 0 ε

as ε =
∣
∣
∣p− 1

2

∣
∣
∣ =

∣
∣
∣(1− p)− 1

2

∣
∣
∣.
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Linear Cryptanalysis of the cipher (10) - First phase

K
(1)

K
(2)

K
(3)

K
(4)

K
(5)

S S

S

SS

S

SS
a
(1) · P⊕ b

(1) ·Y(1) = 0 ε(1)

a
(2) ·X(2) ⊕ b

(2) ·Y(2) = 0 ε(2)

a
(3) ·X(3) ⊕ b

(3) ·Y(3) = 0 ε(3)

X
(1)

Y
(1) = X

(2)

Y
(2) = X

(3)

Y
(3) = X

(4)

Z
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Linear Cryptanalysis of the cipher (11) - First phase

If b(1) = a(2) and b(2) = a(3) we can add the 3 linear equations:

a
(1) · P⊕ b

(3) ·Y(3) = 0

A generalization of Linear Cryptanalysis ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

18



Linear Cryptanalysis of the cipher (11) - First phase

If b(1) = a(2) and b(2) = a(3) we can add the 3 linear equations:

a
(1) · P⊕ b

(3) ·Y(3) = 0

Using the piling-up lemma :

ε = 4 ε(1) ε(2) ε(3)
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Linear Cryptanalysis of the cipher (11) - First phase

If b(1) = a(2) and b(2) = a(3) we can add the 3 linear equations:

a
(1) · P⊕ b

(3) ·Y(3) = 0

Using the piling-up lemma :

ε = 4 ε(1) ε(2) ε(3)

Going through K(4), we finally obtain an expression like:

a · P⊕ b · Z = 0

with a large bias ε.

A generalization of Linear Cryptanalysis ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

18-b



Linear Cryptanalysis of the cipher (12) - Second phase

P

C

P3P7P11

Z3Z5

S S

K(5)
7

K(5)
0

· · ·· · · · · ·

First three rounds
P3 ⊕ P7 ⊕ P11 ⊕ Z3 ⊕ Z5 = 0 ε
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Linear Cryptanalysis of the cipher (12) - Second phase

P

C

P3P7P11

Z3Z5

S S

K(5)
7

K(5)
0

· · ·· · · · · ·

First three rounds
P3 ⊕ P7 ⊕ P11 ⊕ Z3 ⊕ Z5 = 0 ε

1: For every possible K(5)
7 , . . . , K(5)

0 do

A generalization of Linear Cryptanalysis ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

19-a



Linear Cryptanalysis of the cipher (12) - Second phase

P

C

P3P7P11

Z3Z5

S S

K(5)
7

K(5)
0

· · ·· · · · · ·

First three rounds
P3 ⊕ P7 ⊕ P11 ⊕ Z3 ⊕ Z5 = 0 ε

1: For every possible K(5)
7 , . . . , K(5)

0 do

2: Set c to 0. For every (P, C), compute Z and increment c if equation holds.
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Linear Cryptanalysis of the cipher (12) - Second phase

P

C

P3P7P11

Z3Z5

S S

K(5)
7

K(5)
0

· · ·· · · · · ·

First three rounds
P3 ⊕ P7 ⊕ P11 ⊕ Z3 ⊕ Z5 = 0 ε

1: For every possible K(5)
7 , . . . , K(5)

0 do

2: Set c to 0. For every (P, C), compute Z and increment c if equation holds.

3: εK(5)

7 ,...,K(5)

0
=
∣
∣ c
n
− 1

2

∣
∣
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Linear Cryptanalysis of the cipher (12) - Second phase

P

C

P3P7P11

Z3Z5

S S

K(5)
7

K(5)
0

· · ·· · · · · ·

First three rounds
P3 ⊕ P7 ⊕ P11 ⊕ Z3 ⊕ Z5 = 0 ε

1: For every possible K(5)
7 , . . . , K(5)

0 do

2: Set c to 0. For every (P, C), compute Z and increment c if equation holds.

3: εK(5)

7 ,...,K(5)

0
=
∣
∣ c
n
− 1

2

∣
∣

4: Output the subkey bits corresponding to the largest bias.
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Linear Cryptanalysis of the cipher (14) - Recap’

Linear cryptanalysis in two phases:

1. Find an effective linear expression

2. Find the last subkey bits
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Linear Cryptanalysis of the cipher (14) - Recap’

Linear cryptanalysis in two phases:

1. Find an effective linear expression

• Ã Generalise linear expression

• Ã Generalise bias

• Ã Generalise piling-up lemma

2. Find the last subkey bits
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Generalization of critical notions (1) - linear expressions

We will can consider a, P,b, C,Z, . . . as elements of the finite field F216.
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Generalization of critical notions (1) - linear expressions

We will can consider a, P,b, C,Z, . . . as elements of the finite field F216.

The trace function defines a linear mapping from F216 onto one of its

subfields. (e.g. F2):

Tr : F216 −→ F2

X 7−→ Tr (X)
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Generalization of critical notions (1) - linear expressions

We will can consider a, P,b, C,Z, . . . as elements of the finite field F216.

The trace function defines a linear mapping from F216 onto one of its

subfields. (e.g. F2):

Tr : F216 −→ F2

X 7−→ Tr (X)

We can replace the inner-dot product by the trace function:

a · P Ã Tr (aP)
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Generalization of critical notions (1) - linear expressions

We will can consider a, P,b, C,Z, . . . as elements of the finite field F216.

The trace function defines a linear mapping from F216 onto one of its

subfields. (e.g. F2):

Tr : F216 −→ F2

X 7−→ Tr (X)

We can replace the inner-dot product by the trace function:

a · P Ã Tr (aP)

A linear expression becomes:

a · P⊕ b · Z = 0 Ã Tr (aP⊕ bZ) = 0
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Generalization of critical notions (2) - linear expressions

We denoted p the probability that

a · P⊕ b · Z = 0

holds. We now denote p the probability that

Tr (aP⊕ bZ) = 0

holds.
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Generalization of critical notions (2) - linear expressions

We denoted p the probability that

a · P⊕ b · Z = 0

holds. We now denote p the probability that

Tr (aP⊕ bZ) = 0

holds.

It can be shown that:

p = Pr [Tr (bZ) = 0 | Tr (aP) = 0] .
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Generalization of critical notions (2) - linear expressions

We denoted p the probability that

a · P⊕ b · Z = 0

holds. We now denote p the probability that

Tr (aP⊕ bZ) = 0

holds.

It can be shown that:

p = Pr [Tr (bZ) = 0 | Tr (aP) = 0] .

We define a linear transition matrix:

LT (a,b) =

(

p 1− p
1− p p

)

which can replace linear expression.
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Generalization of critical notions (3) - bias

Bias matrix associated to the transition matrix:

LB (a,b) = LT (a,b)−

(

1/2 1/2
1/2 1/2

)

=

(

ε −ε
−ε ε

)

where the bias of the (old) linear expressions is ε = |ε|.
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Generalization of critical notions (3) - bias

Bias matrix associated to the transition matrix:

LB (a,b) = LT (a,b)−

(

1/2 1/2
1/2 1/2

)

=

(

ε −ε
−ε ε

)

where the bias of the (old) linear expressions is ε = |ε|.

A linear expression is effective if its bias

ε =

∣
∣
∣
∣p−

1

2

∣
∣
∣
∣

is large.
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Generalization of critical notions (3) - bias

Bias matrix associated to the transition matrix:

LB (a,b) = LT (a,b)−

(

1/2 1/2
1/2 1/2

)

=

(

ε −ε
−ε ε

)

where the bias of the (old) linear expressions is ε = |ε|.

A linear expression is effective if its bias

ε =

∣
∣
∣
∣p−

1

2

∣
∣
∣
∣

is large.

A linear transition matrix is effective if its bias

‖ LB (a,b) ‖22 =
∑

i,j

ε2i,j

is large.
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Generalization of critical notions (4) - Recap’

• Linear expression Ã LT

• ε =
∣
∣
∣p− 1

2

∣
∣
∣ Ã ‖ LB ‖2
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Generalization of critical notions (4) - Recap’

• Linear expression Ã LT

• ε =
∣
∣
∣p− 1

2

∣
∣
∣ Ã ‖ LB ‖2

Where is the generalization ?!?
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Generalization of critical notions (4) - Recap’

• Linear expression Ã LT

• ε =
∣
∣
∣p− 1

2

∣
∣
∣ Ã ‖ LB ‖2

Where is the generalization ?!?

We can choose:

• F24 as departure field for the trace,

• and F22 as arrival field,

both seen as vector spaces over F216.
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FÉDÉRALE DE LAUSANNE

24-b



Generalization of critical notions (5) - Recap’

For example, if Tr : F24 −→ F22 we obtain:

[LT (a, b)]i,j = Pr [Tr (b · Z) = j | Tr (a · P) = i]

with

b · Z = b0Z0 ⊕ b1Z1 ⊕ b2Z2 ⊕ b3Z3 .

where b0, b1, Z0, · · · ∈ F24.
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Generalization of critical notions (5) - Recap’

For example, if Tr : F24 −→ F22 we obtain:

[LT (a, b)]i,j = Pr [Tr (b · Z) = j | Tr (a · P) = i]

with

b · Z = b0Z0 ⊕ b1Z1 ⊕ b2Z2 ⊕ b3Z3 .

where b0, b1, Z0, · · · ∈ F24.

The bias matrix is simply

LB (a, b) = LT (a, b)−






1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4






The matrix is effective if ‖ LB (a, b) ‖2 is large.
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Generalized cryptanalysis of the cipher (1) - Prologue

Generalized cryptanalysis in F4.

Find an equivalent cipher: permutation has to be linear in F24.

K1

K̃2

K̃3

K̃4

K5

S1 S1

S2 S2

S2 S2

S3 S3
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Generalized cryptanalysis of the cipher (2) - First phase

Step 1: Find an effective transition matrix on the substitution box.

S

U0U1U2U3U4U5U6U7

V0V1V2V3V4V5V6V7
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Generalized cryptanalysis of the cipher (2) - First phase

Step 1: Find an effective transition matrix on the substitution box.

S

U0U1U2U3U4U5U6U7

V0V1V2V3V4V5V6V7

Set LT (a, b) to 0. For every input U, increment [LT (a,b)]i,j where

i = Tr (a ·U)

j = Tr (b ·V)

Compute LT (a,b)← 22

28LT (a,b) and LB (a,b).
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Generalized cryptanalysis of the cipher (2) - First phase

Step 1: Find an effective transition matrix on the substitution box.

S

U0U1U2U3U4U5U6U7

V0V1V2V3V4V5V6V7

Set LT (a, b) to 0. For every input U, increment [LT (a,b)]i,j where

i = Tr (a ·U)

j = Tr (b ·V)

Compute LT (a,b)← 22

28LT (a,b) and LB (a,b).

If ‖ LB (a,b) ‖2 is large, the matrix is effective.
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Generalized cryptanalysis of the cipher (3) - First phase

Step 2: Find transition matrix on the S-box layer.

S S

U0U1U2U3U4U5U6U7U9 U8U11U12 U10U13U14U15

V15 V14 V13 V12 V11 V10 V9 V8 V1 V0V2V3V4V5V6V7

A generalization of Linear Cryptanalysis ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

28



Generalized cryptanalysis of the cipher (3) - First phase

Step 2: Find transition matrix on the S-box layer.

S S

U0U1U2U3U4U5U6U7U9 U8U11U12 U10U13U14U15

V15 V14 V13 V12 V11 V10 V9 V8 V1 V0V2V3V4V5V6V7

We suppose that only one S-box is active, i.e.

a =






a0

a1

0
0




 and b =






b0
b1
0
0






Transition matrix on S-box layer = Transition matrix on S-box.

A generalization of Linear Cryptanalysis ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

28-a



Generalized cryptanalysis of the cipher (4) - First phase

Step 3: Going through the permutation.

SS

U0U2

Y0

U3

Y3 Y2 Y1

U1

Y

U

V

[LT (a,b)]i,j = Pr [Tr (b ·V) = j | Tr (a ·U) = i]
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Generalized cryptanalysis of the cipher (4) - First phase

Step 3: Going through the permutation.

SS

U0U2

Y0

U3

Y3 Y2 Y1

U1

Y

U

V

[LT (a,b)]i,j = Pr [Tr (b ·V) = j | Tr (a ·U) = i]

becomes

[LT
(

a, b̃
)

]i,j = Pr
[

Tr
(

b̃ ·Y
)

= j | Tr (a ·U) = i
]

with

a =






a0

a1

0
0




 and b̃ =






b0
0
b1
0





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Generalized cryptanalysis of the cipher (5) - First phase

Step 4: Going through the key layer.

K

SS

Y0Y3 Y2 Y1

X0X1X2X3

Y

U

V

X
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Generalized cryptanalysis of the cipher (5) - First phase

Step 4: Going through the key layer.

K

SS

Y0Y3 Y2 Y1

X0X1X2X3

Y

U

V

X

The transition matrix on one full round is:

Pk × LT
(

a, b̃
)

where Pk is a permutation matrix depending on k = Tr (a ·K).
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Generalized cryptanalysis of the cipher (6) - First phase

K
(1)

K
(2)

K
(3)

K
(4)

K
(5)

S S

S

SS

S

SS
Pk(1) × LT

(
a(1),b(1)

)

Pk(2) × LT
(
a(2),b(2)

)

Pk(3) × LT
(
a(3),b(3)

)

X
(1)

Y
(1) = X

(2)

Y
(2) = X

(3)

Y
(3) = X

(4)

Z
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Generalized cryptanalysis of the cipher (7) - First phase

Step 5: Finding a transition matrix on the first three rounds.

If b(1) = a(2) and b(2) = a(3) we can find the transition matrix on the

first three rounds (including K(4)):
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Generalized cryptanalysis of the cipher (7) - First phase

Step 5: Finding a transition matrix on the first three rounds.

If b(1) = a(2) and b(2) = a(3) we can find the transition matrix on the

first three rounds (including K(4)):





3∏

r=1

P
k(r) × LT

(

a
(r),b(r)

)



× P
k(4)
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Generalized cryptanalysis of the cipher (7) - First phase

Step 5: Finding a transition matrix on the first three rounds.

If b(1) = a(2) and b(2) = a(3) we can find the transition matrix on the

first three rounds (including K(4)):





3∏

r=1

P
k(r) × LT

(

a
(r),b(r)

)



× P
k(4)

One can show that the corresponding bias matrix is:




3∏

r=1

P
k(r) × LB

(

a
(r),b(r)

)



× P
k(4)
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Generalized cryptanalysis of the cipher (8) - First phase

Step 5 - cont’: Finding a transition matrix on the first three rounds.

The generalized piling-up lemma gives the bias of the last equation:
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Generalized cryptanalysis of the cipher (8) - First phase

Step 5 - cont’: Finding a transition matrix on the first three rounds.

The generalized piling-up lemma gives the bias of the last equation:

‖





3∏

r=1

P
k(r) × LB

(

a
(r),b(r)

)



× P
k(4) ‖2 ≈

1

9

3∏

r=1

‖ LB

(

a
(r),b(r)

)

‖2
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Generalized cryptanalysis of the cipher (8) - First phase

Step 5 - cont’: Finding a transition matrix on the first three rounds.

The generalized piling-up lemma gives the bias of the last equation:

‖





3∏

r=1

P
k(r) × LB

(

a
(r),b(r)

)



× P
k(4) ‖2 ≈

1

9

3∏

r=1

‖ LB

(

a
(r),b(r)

)

‖2

We finaly find a transition matrix on the first the rounds (i.e. in

input/output mask (a,b)) and its bias.
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Generalized cryptanalysis of the cipher (9) - Second phase

P

C

S S

First three rounds

P7 P0

Z7 Z0

LT (a, b)

K(5)
7

K(5)
0

· · ·· · · · · ·
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Generalized cryptanalysis of the cipher (9) - Second phase

P

C

S S

First three rounds

P7 P0

Z7 Z0

LT (a, b)

K(5)
7

K(5)
0

· · ·· · · · · ·

1: For every possible K(5)
7 , . . . , K(5)

0 do

A generalization of Linear Cryptanalysis ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

34-a



Generalized cryptanalysis of the cipher (9) - Second phase

P

C

S S

First three rounds

P7 P0

Z7 Z0

LT (a, b)

K(5)
7

K(5)
0

· · ·· · · · · ·

1: For every possible K(5)
7 , . . . , K(5)

0 do

2: Set matrix LT to 0. For every (P, C), compute Z and increment [LT]i,j where

i = Tr (a · P) and j = Tr (b · Z)
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Generalized cryptanalysis of the cipher (9) - Second phase

P

C

S S

First three rounds

P7 P0

Z7 Z0

LT (a, b)

K(5)
7

K(5)
0

· · ·· · · · · ·

1: For every possible K(5)
7 , . . . , K(5)

0 do

2: Set matrix LT to 0. For every (P, C), compute Z and increment [LT]i,j where

i = Tr (a · P) and j = Tr (b · Z)

3: Compute LT ← 2−6LT and LB
K(5)

7 ,...,K(5)

0

A generalization of Linear Cryptanalysis ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

34-c



Generalized cryptanalysis of the cipher (9) - Second phase

P

C

S S

First three rounds

P7 P0

Z7 Z0

LT (a, b)

K(5)
7

K(5)
0

· · ·· · · · · ·

1: For every possible K(5)
7 , . . . , K(5)

0 do

2: Set matrix LT to 0. For every (P, C), compute Z and increment [LT]i,j where

i = Tr (a · P) and j = Tr (b · Z)

3: Compute LT ← 2−6LT and LB
K(5)

7 ,...,K(5)

0

4: Output the subkey bits corresponding to the largest ‖ LB
K(5)

7 ,...,K(5)

0

‖2.
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Limitations, further improvements and conclusion (1)

Theorem: Consider a permutation C over {0,1}n. If for any a, b ∈ F ∗2m

the bias matrix in F2 is such that

ε2 ≤ 4B

then, for any a, b ∈ F ∗2m the bias matrix in F2n is such that:

∑

i,j

ε2i,j ≤ 22nB .

In other words. . .
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Limitations, further improvements and conclusion (1)

Theorem: Consider a permutation C over {0,1}n. If for any a, b ∈ F ∗2m

the bias matrix in F2 is such that

ε2 ≤ 4B

then, for any a, b ∈ F ∗2m the bias matrix in F2n is such that:

∑

i,j

ε2i,j ≤ 22nB .

In other words. . .

If a cipher is very strong against linear cryptanalysis, it is strong

against generalized linear cryptanalysis.
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Limitations, further improvements and conclusion (2)

Theorem is true only when the transition matrix is defined with the

trace function.

General definition:

[LT (a, b)]i,j = PrX [Φ(bC(X)) = j | Ψ(aX) = i] .
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Limitations, further improvements and conclusion (3)

Thank you for your attention !
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