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Definition of a lattice

Let f1, . . . , fn be linearly independent vectors of R
n

L =

{

n
∑

i=1

uifi | ui ∈ Z

}

is a (full-ranked) lattice. The fi’s are a basis of L.

If the fi’s are considered like rows of the n× n matrix

F =









f1

...
fn









then
L = {uF | u ∈ Z

n} .
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Determinant of a lattice

The determinant of a lattice L is

det(L) = |det(F)|

It is well defined. If F and G are two basis of L, there exists
some unimodular matrix P s.t.

F = P× G ⇒ det(F) = det(P) · det(G) = ± det(G)

The determinant is independent of the basis choice.

It has a simple geometrical interpretation . . .
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Geometrical interpretation of the determinant

det(L)f2

f1

In dimension 2 Ã area of the parallelogram defined by f1, f2.
In dimension n Ã volume of the parallelepiped defined by the fi’s

⇒ Hadamard inequality:

det(L) ≤
n
∏

i=1

‖ fi ‖

Typical distance in L −→ det(L)
1

n
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Shortest Vector Problem (SVP)

The Shortest Vector Problem (SVP) is to find a smallest
non-zero vector in L, i.e.

u ∈ L \ {0} s.t. ‖ u ‖ ≤ ‖ v ‖ ∀v ∈ L \ {0}

It is proved [Ajtai98] that SVP is NP-hard (under randomized
reduction).
Ã Can we approximate SVP ?

Find

u ∈ L \ {0} s.t. ‖ u ‖ ≤ f(n) ‖ v ‖ ∀v ∈ L \ {0}

LLL approximates SVP to within a factor f(n) = 2
n−1

2 in
polynomial time.
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Closest Vector Problem (CVP)

Let x ∈ R
n (not necessarily in L).

The Closest Vector Problem (CVP) is to find u ∈ L minimizing
the distance between ‖ x− u ‖, i.e.

u ∈ L s.t. ‖ x− u ‖ ≤ ‖ x− v ‖ ∀v ∈ L

It is proved [GMSS99] that SVP is not harder than CVP.

Approximating CVP is to find

u ∈ L s.t. ‖ x− u ‖ ≤ f(n) ‖ x− v ‖ ∀v ∈ L

The embedding method is an heuristic to reduce CVP to
SVP. . .
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The embedding method

L is a lattice of basis f1, . . . , fn (rows of F). CVP of x ∈ R
n?

Construct a lattice L′ (of dimension n+ 1) of basis

F
′ =

(

F 0

x 1

)

As
{

dim(L′) ≈ dim(L)

det(L′) = det(L)

we consider that “being short ” in L′ also means “being short ”
in L.
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The embedding method (2)

The point

(−u1, . . . ,−un, 1)×
(

F 0

x 1

)

= (x− u, 1)

is supposed to a short vector of L′ = {uF′ | u ∈ Z
n}.

⇒ solving SVP in L′ (e.g. f2) solves CVP in L (e.g. f2,xÃ u).

u
f2 f1

x
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GnuPG

→ GnuPG (GPG) is a full implementation of the OpenPGP
standard.

→ Open-source effort supported by German government.
→ Provides encryption and signatures for securing email.
→ Supports DSA, RSA, AES, 3DES, Blowfish, Twofish, CAST5,

MD5, SHA-1, RIPEMD-160, and TIGER.
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GnuPG Signatures

→ Standard mode: DSA (signature keys) + ElGamal
(encryption keys).

→ Expert mode (1): ElGamal for both signature and encryption.
→ Expert mode (2): RSA for both signature and encryption.
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Padding used by GnuPG

→ When RSA and ElGamal are used, the message is hashed,
and the hash value is encoded as specified in PKCS# v1.5.

→ 0x00||0x01||0xFF|| . . . ||0xFF||0x00||H(m).
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ElGamal Signatures

→ Public parameters: a prime p and a generator g of Z
∗

p.

→ Private key: x ∈R]0, p− 1[.
→ Public key is y = gx mod p.
→ Signature of m: take a random k ∈R]0, p− 1[ and compute

a = gk mod p

b = (m− ax)k−1 mod (p− 1)

→ Signature is σ = (a, b).
→ A signature is valid if the following congruence holds:

yaab ≡ gm (mod p) since yaab ≡ gaxgbk ≡ gax+bk ≡ gm (mod p)
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ElGamal Key Generation

→ First, a large prime p is generated pseudo-randomly, such
that the factorization of p−1

2 is known.

→ All the factors of p−1
2 must have a bit length larger than a

threshold qbit depending of the bitlength of p.
→ qbit is given by the so-called Wiener’s table:

|p| 512 768 1024 1280 . . .

qbit 119 145 165 183 . . .

→ Remember that the size of p is always larger than 4 · qbit !
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ElGamal Key Generation (2)

→ Once q is selected, one finds a generator g of Z
∗

p as follows:

→ If 3 is not a generator, then on tries 4, and so on.
→ g is likely to be small, but Bleichenbacher’s forgery of

ElGamal signatures does not seem to apply, because of the
size of the factors of p−1

2 .

→ The ElGamal private exponent x must be chosen uniformly
at random on 0 < x < p− 1, but, for efficiency reasons, it is
chosen as 0 < x < 3qbit

2 .

→ The ElGamal random nonce k must be chosen uniformly at
random on 0 < k < p− 1, but, for efficiency reasons, it is
chosen as 0 < k < 3qbit

2 .
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Solving a congruence with a lattice

The attacker has access to a valid signature σ = (a, b) of a
message m ∈ Zp−1.

The following congruence should hold:

ax+ bk ≡ m (mod p− 1)

Unknowns: x and k (very small)

Solving the congruenceÃ solving a CVP instance in a lattice!
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The lattice we need

Lemma: Let (α, β) ∈ Z
2 and n ∈ N. Let

d = gcd(α, n)

e = gcd(α, β, n) .

Let L = {(u, v) ∈ Z
2 s.t. αu+ βv ≡ 0 (mod n)}. Then

■ L is a two dimensional lattice of Z
2

■ det(L) = n
e

■ There exists u ∈ Z such that αu+ (β/e)d ≡ 0 (mod n)

■ The vectors (n/d, 0) and (u, d/e) form a basis of L
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Nguyen’s attack (1)

Let
L = {(u, v) ∈ Z

2 | au+ bv ≡ 0 (mod p− 1)

L is a two-dimensional lattice.

With d = gcd(a, p− 1) and e = gcd(a, b, p− 1), there exists
u ∈ Z such that au+ (b/e)d ≡ 0 (mod p− 1).

A basis of L is

B =

(

p−1
d 0

u d
e

)

det(L) = p−1
e = p−1

gcd(a,b,p−1) ≈ p (by construction)

⇒ Typical distance in the lattice
√

det(L) ≈ √p
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Nguyen’s attack (2)

Find (x′, k′) ∈ Z
2 such that ax′ + bk′ ≡ m (mod p− 1)

For this:

Find λ1, λ2, λ3 ∈ Z such that

aλ1 + bλ2 + (p− 1)λ3 = e (with EEA)

As e | m (recall ax+ bk ≡ m (mod p− 1)),
multiplying λ1, λ2 by m

e leads to x′, k′
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Nguyen’s attack (3)

Let

l = (x′ − x, k′ − k) (unknown vector ∈ L)
t = (x′ − 23qbit/2, k′ − 23qbit/2) (known vector /∈ L)

As |x| ≈ |k| ≈ 3qbit/2,

‖ t− l ‖ ≈ 2
3qbit−1

2 ¿ 22qbit <
√
p ≈

√

det(L)

⇒ Heuristic : l ∈ L is the closest vector of t



A survey on lattices

GPG and ElGamal Signatures

Attack against GPG-ElGamal

● Solving a congruence. . .

● The lattice we need

● Nguyen’s attack (1)

● Nguyen’s attack (2)

● Nguyen’s attack (3)

● Nguyen’s attack (4)

● Yet another attack

● Yet another attack (2)

GPG RSA Key Generation

Conclusion

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Cryptosystems and LLL - p. 21/26

Nguyen’s attack (4)

det(L)

f1

‖ f1 ‖≈‖ f2 ‖≈ det(L)1/2

‖ t− l ‖¿ det(L)1/2

f2

t

l

Solving a CVP instance in L (e.g. with the embedded method)
allows to recover l = (x′ − x, k′ − k) and thus x and k, i.e.

Ã the private key of the signer is recovered !
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Yet another attack

Let K be a large integer let L′ be the 4-dimensional lattice
defined by

B
′ =











(p− 1)K 0 0 0

−mK 23qbit/2 0 0

bK 0 1 0

aK 0 0 1











.

As ax+ bk ≡ m (mod p− 1), there exists λ ∈ Z s.t.

(p− 1)λ−m+ bk + ax = 0

so that

l
′ = (λ, 1, k, x)B′ = ((p− 1)λK −mK + bkK + axK, 23qbit/2, k, x)

= (0, 23qbit/2, k, x) ∈ L′
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Yet another attack (2)

Provided that K is large enough

‖ l
′ ‖¿ det(L′)1/4

We make the assumption that l
′ is a shortest vector of L′.

Solving an easy SVP instance in L′ (e.g. with LLL) allows to
recover l

′ = (0, 23qbit/2, k, x).
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RSA Key Generation

→ GnuPG RSA key generation algorithm is flawed as well.
→ Once two primes p and q of size k/2 bits are generated such

that n = p · q has a size of k bits, one generates a public
exponent e.

→ If 41 is coprime with (p− 1) · (q − 1), then take e = 41;
otherwise, try e = 257, e = 65537, e = 65539, e = 65541, until
a proper e is found.
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Biased Key Generation

→ Note that if e ≥ 65539 (this occurs with small probability),
then on knows a 30-bit factor of φ(n), namely
41× 257× 65537 !

→ Not a real/practical security problem, as one needs to know
a factor of the size of n

1

4 .
→ But... any information leakage about φ(n) is a bad idea !
→ One should first choose e, and then generate p and q.
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Conclusion

→ The quality of the implementation of cryptography could be
considerably improved !

→ OpenPGP (and GnuPG) should recommend recent
standards !
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