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L 2SS EL Definition of a lattice

A survey on lattices
[« Definiton of alatice |
e Determinant of a lattice

e Geometrical interpretation
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e The embedding method

e The embedding method (2)
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Let f,, ..., f, be linearly independent vectors of R”
=1

Is a (full-ranked) lattice. The f;’s are a basis of L.

If the f;’s are considered like rows of the n x n matrix

then
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L 2SS EL Determinant of a lattice

A survey on lattices The determinant of a lattice L is

e Definition of a lattice

e Geometrical interpretation det (E) — | det ( F) |

e SVP

e CVP

e The embedding method

e The embedding method (2)

GPG and ElGamal Signatures

Attack against GPG-ElGamal It is well defined. If F and G are two basis of £, there exists
SPO Roh Koy Generaton some unimodular matrix P s.t.
Conclusion

F=PxG = det(F) =det(P) - det(G) = £ det(G)

The determinant is independent of the basis choice.

It has a simple geometrical interpretation ...
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£t S EL Geometrical interpretation of the determinant

A survey on lattices
e Definition of a lattice
e Determinant of a lattice
e SVP
o CVP
e The embedding method - B
e The embedding method (2) 4'-'- o
/ . .-
GPG and ElGamal Signatures £ 4 det (£)7 R

/

, -
Attack against GPG-ElGamal - h

GPG RSA Key Generation

ety In dimension 2 ~~ area of the parallelogram defined by f, 5.
In dimensionn  ~~ volume of the parallelepiped defined by the £

= Hadamard inequality:
det(L) <[] Il fi |
1=1

Typical distance in £ — det(L£) =
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£t ZSEL Shortest Vector Problem (SVP)

A survey on ltices The Shortest Vector Problem (SVP) is to find a smallest

e Definition of a lattice

e Determinant of a lattice non-zZero VeCtor |n E, |e

e Geometrical interpretation

uec L\{0} st Jul[<[v] vvel)\{0}

e The embedding method
e The embedding method (2)

GPG and ElGamal Signatures

Attack against GPG-ElGamal It IS proved [A]tai98] that SVP is NP-hard (under randomized

GPG RSA Key Generation red u Ctl O n) .
Conclusion ~» Can we approximate SVP ?
Find

uec L\{0} st [ull< f(n) v Vvel\{0;

n —

LLL approximates SVP to within a factor f(n) =272 |

polynomial time.
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£t ASEL Closest Vector Problem (CVP)

A survey on lattices Let X E R?’L (not neCessarlly In E)

e Definition of a lattice
e Determinant of a lattice
e Geometrical interpretation

The Closest Vector Problem (CVP) is to find u € £ minimizing
e e e 2 the distance between || x —u ||, i.e.

GPG and ElGamal Signatures

uel st |x—ul|<|x—=Vv] WVWweCL

Attack against GPG-ElGamal

GPG RSA Key Generation

camz e It is proved [GMSS99] that SVP is not harder than CVP.

Approximating CVP is to find
ucl st |x—u| < f(n)]x—v]|] VwecL

The embedding method is an heuristic to reduce CVP to
SVP...
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£ ZSEL The embedding method

A sirvey on tices L is a lattice of basis f;, ..., f, (rows of F). CVP of x € R"?

e Definition of a lattice

e Determinant of a lattice

e Geometrical interpretation
e SVP

e CVP

e The embecding method 2 Construct a lattice £’ (of dimension n + 1) of basis

GPG and ElGamal Signatures

F|1O

GPG RSA Key Generation X ]_

Attack against GPG-ElGamal F/ .

Conclusion

As
dim(£") ~ dim(L)
det(L") = det(L)

we consider that “being short” in £’ also means “being short”
in L.
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£t ZSEL The embedding method (2)

A survey on lattices Th e p0| nt

e Definition of a lattice

e Determinant of a lattice

e Geometrical interpretation

e SVP F 0

- cvp (—Upy.eey —Up, 1) X = (x—u,1)
e The embedding method X 1

e The embedding method (2)

GPG and ElGamal Signatures

IS supposed to a short vector of £ = {uF’ | u e Z"}.

Attack against GPG-ElGamal

GPG RSA Key Generation

= solving SVP in £’ (e.g. ;) solves CVP in L (e.g. f5,x ~ u).

Conclusion

I CPFL
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t 23F L GhubG

A survey on lattices

GPG and ElGamal Signatures

oo

e GnuPG Signatures

e Padding used by GnuPG

e ElGamal Signatures

e ElGamal Key Generation

e ElGamal Key Generation (2)

Attack against GPG-ElGamal

GPG RSA Key Generation

Conclusion
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— GnuPG (GPG) is a full implementation of the OpenPGP

standard.

— Open-source effort supported by German government.
— Provides encryption and signatures for securing email.
— Supports DSA, RSA, AES, 3DES, Blowfish, Twofish, CASTS5,

MD5, SHA-1, RIPEMD-160, and TIGER.
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£t S EL GnuPG Signatures

Asurvey on latices — Standard mode: DSA (signature keys) + ElGamal
GPG and ElGamal Signatures (encrypt|on keyS)

o GnuPG

= — Expert mode (1): ElIGamal for both signature and encryption.
e ElGamal Signatures

« EIGamal Key Generaton — Expert mode (2): RSA for both signature and encryption.

e ElGamal Key Generation (2)

Attack against GPG-ElGamal

GPG RSA Key Generation

Conclusion
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£ S EL padding used by GnuPG

A survey on lattices

GPG and ElGamal Signatures

e GnuPG
e GnuPG Signatures

e Padding used by GnuPG

e ElGamal Signatures
e ElGamal Key Generation
e ElGamal Key Generation (2)

Attack against GPG-ElGamal

GPG RSA Key Generation

Conclusion
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— When RSA and ElGamal are used, the message is hashed,
and the hash value is encoded as specified in PKCS# v1.5.

—» 0x00]|0x01||0xFF|| . . . ||0xFF||0x00]|H(m).
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£ S EL pigamal Signatures

A survey on lattices

Public parameters: a prime p and a generator g of Z.

GPG and ElGamal Signatures
e GnuPG

e GnuPG Signatures

e Padding used by GnuPG

e ElGamal Key Generation

e ElGamal Key Generation (2)

Private key: = €r]0,p — 1].
Public key is y = ¢* mod p.
Signature of m: take a random k €g]0, p — 1| and compute

A A

Attack against GPG-ElGamal

a = ¢"modp

GPG RSA Key Generation

Conclusion b — <m - CLZE)k_l mOd (p - 1)

l

Signature is o = (a, b).
A signature is valid if the following congruence holds:

l

yaab = ¢"" (mod p) since yaab = g"’xgbk = gam+bk =¢" (mod p)
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£ ASEL FiGamal Key Generation

A survey on lattices

GPG and ElGamal Signatures

e GnuPG

e GnuPG Signatures

e Padding used by GnuPG
e ElGamal Signatures

e ElGamal Key Generation

e ElGamal Key Generation (2)

Attack against GPG-ElGamal

GPG RSA Key Generation

Conclusion
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— First, a large prime p is generated pseudo-randomly, such
that the factorization of pT_l Is known.

— All the factors of pT_l must have a bit length larger than a
threshold ¢,;; depending of the bitlength of p.

— Qpit IS given by the so-called Wiener's table:
p| 512 768 1024 1280

grit 119 145 165 183
— Remember that the size of p is always larger than 4 - gy !
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£ ASEL ElGamal Key Generation (2)

Astirvey on latices — Once ¢ is selected, one finds a generator g of Z; as follows:
cewrs = — |f 3is not a generator, then on tries 4, and so on.

e GnuPG Signatures . . .

¢ Paddng usedy G — ¢ IS likely to be small, but Bleichenbacher’s forgery of

« ElGamal Key Generation ElGamal signatures does not seem to apply, because of the

e ElGamal Key Generation (2)

Attack against GPG-ElGamal

GPG RSA Key Generation — The ElGamal private exponent  must be chosen uniformly
SRl at randomon 0 < x < p — 1, but, for efficiency reasons, it is

chosenas 0 < z < 2%it,

— The ElGamal random nonce k£ must be chosen uniformly at
random on 0 < k < p — 1, but, for efficiency reasons, it is

chosenas 0 < k < 2%it,

size of the factors of 2.
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LASELD Solving a congruence with a lattice

Asurvey on latices The attacker has access to a valid signature ¢ = (a, b) of a
GPG and ElGamal Signatures message m & Zp—l'

Attack against GPG-ElGamal

Rl R
e The lattice we need The fO”OWIng Congruence ShOUld hOld

e Nguyen’s attack (1)

e Nguyen’s attack (2)

e Nguyen’s attack (3) .

e Nguyen’s attack (4) axr —1_ bk = m (mOd p - 1)
e Yet another attack

e Yet another attack (2)

GPG RSA Key Generation

Unknowns: = and & (very small)

Conclusion

Solving the congruence ~~ solving a CVP instance in a lattice!
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LEZEL The lattice we need

et Lemma: Let (a,3) € Z? and n € N. Let
GPG and ElGamal Signatures

Attack against GPG-ElGamal d — ng(a7 n)

e Solving a congruence. ..

e = gecd(a,B,n).

e Nguyen’s attack (1)
e Nguyen'’s attack (2)

o Nguyen'’s attack (3) Let E — {(u’ /U) e Z2 St alu _|_ 6/0 — O (mOd n)} Then

e Nguyen’s attack (4)
e Yet another attack
e Yet another attack (2)

6P RSA Key Generaion = £ is a two dimensional lattice of Z~

Conclusion = det(L) = 2
= There exists u € Z such that au + (8/e)d = 0 (mod n)
= The vectors (n/d,0) and (u, d/e) form a basis of £
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£ ASEL Nguyen’s attack (1)

A survey on lattices Let
GPG and ElGamal Signatures E — {(’U/, rU) = Z2 ’ alu _|_ er — O (mOd p _ 1)

Attack against GPG-ElGamal

> Solving a congruence. . L 1S a two-dimensional lattice.

e The lattice we need

e Nguyen’s attack (1)

e Nguyen’s attack (2)

« Nouyen's attack () With d = ged(a,p — 1) and e = ged(a, b, p — 1), there exists

e Nguyen’s attack (4)

e Yet another attack u E Z SUCh that au —|— (b/e)d p— O (mOd p — 1).

e Yet another attack (2)
p—1
Uu

det(£) = &=L = gcd(g;)’lp_l) ~p (by construction)

e

GPG RSA Key Generation

Conclusion A baSiS Of £ iS

ol O
N~

= Typical distance in the lattice \/det(£) ~ /p

.(I f\- Cryptosystems and LLL - p. 18/26

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




£ ASEL Nguyen’s attack (2)

B s Find (2/, k') € Z* such that az’ + bk’ = m (mod p — 1)
GPG and ElGamal Signatures
v —  For this:

e The lattice we need

e Nguyen’s attack (1)

.
e Nguyen’s attack (3) Flnd )\1’ )\27 )\3 E Z SUCh that

e Nguyen’s attack (4)
e Yet another attack

e Yet another attack (2) a/)\l —|_ b)\Q —|— (p —_— 1))\3 p— 6 (Wlth EEA)

GPG RSA Key Generation

Conclusion

As e | m (recall ax + bk =m (mod p — 1)),
multiplying Ay, A2 by ™ leads to z', £

I CPFL
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£ S EL Nguyen’s attack (3)

A survey on lattices

GPG and ElGamal Signatures

Attack against GPG-ElGamal

e Solving a congruence. ..
e The lattice we need
e Nguyen’s attack (1)
e Nguyen’s attack (2)

e Nguyen’s attack (3)

e Nguyen’s attack (4)
e Yet another attack
e Yet another attack (2)

GPG RSA Key Generation

Conclusion

I CPFL
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Let

As |x|

Q

(' —x, k' — k)
(33/ _ 23£noit/27 L — 23Qbit/2)

‘k| ~ SQbit/Q,

|[t—1] ~ 2

3apig —1

2

(unknown vector € £)
(known vector ¢ £)

< 22t <\ /p = \/det(L)

= Heuristic : 1 € L is the closest vector of t
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£ ASEL Nguyen's attack (4)

A survey on lattices

GPG and ElGamal Signatures

Attack against GPG-ElGamal
e Solving a congruence. ..

e The lattice we need

e Nguyen’s attack (1)

e Nguyen’s attack (2)

e Nguyen’s attack (3)

e Nguyen’s attack (4)

e Yet another attack
e Yet another attack (2)

GPG RSA Key Generation

Conclusion
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\

/4'--‘
f2 “det(L) .
/ /,7"-
////’/fl

It —1[|< det(£)Y/2 .

/N £1 (|~ f2 ||~ det(L)

Solving a CVP instance in £ (e.g. with the embedded method)
allows to recover 1 = (' — z, k" — k) and thus = and k, i.e.

~ the private key of the signer is recovered !
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Lt 2SE L Yet another attack

A survey on lattices

GPG and ElGamal Signatures

Attack against GPG-ElGamal

e Solving a congruence. ..
e The lattice we need
e Nguyen’s attack (1)
e Nguyen’s attack (2)
e Nguyen’s attack (3)
e Nguyen’s attack (4)

e Yet another attack

e Yet another attack (2)

GPG RSA Key Generation

Conclusion

I CPFL
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Let K be a large integer let L’ be the 4-dimensional lattice
defined by

((p — 1K 0
—mK 23qbit /2

bK 0

K alK 0

B =

o R O O
)

As ax + bk =m (mod p — 1), there exists A\ € Z s.t.
(p—DA—m+bk+ax =0
so that

' = (\1L,ko)B =((p—1)AK —mK +bkK + axK,230%/2 [ 1)
= (0,2%0/2  z) € £
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£t S EL vet another attack (2)

A survey on lattices PrDVlded that K |S Iarge enough

GPG and ElGamal Signatures

Attack against GPG-ElGamal ‘ ‘ ]_/ H << det ([:/) 1/4

e Solving a congruence. ..

e The lattice we need

e Nguyen’s attack (1)

e Nguyen’s attack (2) . ; /
S We make the assumption that 1’ is a shortest vector of L'.
e Yet another attack

GPG RSA Key Generation Solving an easy SVP instance in £’ (e.g. with LLL) allows to

Conclusion recover ]./ — (07 23q]3it/2, k7 iIZ’)
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£ S EL RSA Key Generation

A survey on latices — GnuPG RSA key generation algorithm is flawed as well.

semissmEsmme- . Once two primes p and g of size k/2 bits are generated such
that n = p - ¢ has a size of k bits, one generates a public
GPG RSA Key Generation

exponent e.

e, If 41 is coprime with (p — 1) - (¢ — 1), then take e = 41;
otherwise, try e = 257, e = 65537, e = 65539, e = 65541, until
a proper e Is found.

Attack against GPG-ElGamal

Conclusion

I CPFL
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£ S EL Biased Key Generation

A survey on latices — Note that if e > 65539 (this occurs with small probability),

GPG and ElGama Signatures then on knows a 30-bit factor of ¢(n), namely

Attack against GPG-ElGamal 41 >< 257 >< 65537 |

SRS mon oy Coneraton — Not a real/practical security problem, as one needs to know

a factor of the size of n1.
— But... any information leakage about ¢(n) is a bad idea !
— One should first choose ¢, and then generate p and gq.

Conclusion

I CPFL
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Lt 23 EZ conclusion

A survey on lattices

GPG and ElGamal Signatures

Attack against GPG-ElGamal

GPG RSA Key Generation

Conclusion
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ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

— The quality of the implementation of cryptography could be

considerably improved !

— OpenPGP (and GnuPG) should recommend recent
standards !
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