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Abstract. We introduce C, a practical provably secure block cipher
with a slow key schedule. C is based on the same structure as AES but
uses independent random substitution boxes instead of a fixed one. Its
key schedule is based on the Blum-Blum-Shub pseudo-random generator,
which allows us to prove that all obtained security results are still valid
when taking into account the dependencies between the round keys. C is
provably secure against several general classes of attacks. Strong evidence
is given that it resists an even wider variety of attacks. We also propose
a variant of C with simpler substitution boxes which is suitable for most
applications, and for which security proofs still hold.
Keywords: Block Cipher, provable security, AES, Blum-Blum-Shub
generator, decorrelation

1 Introduction

When designing a public key cryptosystem, proving tight security results often
requires to rely on hard problems such as factoring or discrete logarithm compu-
tation which, by nature, require to manipulate complex objects. When designing
block ciphers, speed requirements do not allow to do so. As a consequence, secu-
rity arguments often rely on heuristic assumptions which, in some cases, might
prove wrong. At SAC 2005, Baignères and Vaudenay [5] showed that replacing
the substitution boxes of AES by independent perfectly random permutations is
enough to prove that 4 rounds are enough to resist linear and differential crypt-
analysis and that 10 rounds are enough to resist any iterated attack of order 1.
Here, we use the exact same construction, improve some results, and plug in a
key schedule based on a provably secure pseudo-random generator. We propose
to use the Blum-Blum-Shub pseudo-random generator [15, 16] as its security is
well established (even for practical parameters), although any provably secure
generator (like for example QUAD [7] or any fast construction based on Goldre-
ich and Levin’s hard-core predicate [26]) could be used, possibly leading to faster
implementations. We obtain C, a block cipher with a slow key schedule, but as
fast as AES when it comes to encryption/decryption and provably secure against
most common attacks: linear and differential cryptanalysis, iterated attacks of
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order 1, impossible differentials and presumably algebraic attacks, slide attacks,
boomerang attack, and, to a certain extent, saturation attacks. Note that all
the security results we obtain take into account the key schedule. To the best of
our knowledge, all current iterated block cipher constructions consider in their
“security proofs” that the round keys are statistically independent, which is not
true in practice as they all derive from the same key.

We start this article with a detailed description of C and of its key schedule.
Ensues a review of all security results on C, starting with those which are proven,
and going on with some results which, though not proven, seem quite reason-
able. We then present a way of considerably speeding up the key schedule while
preserving all security results and finish with implementation considerations.

2 The Block Cipher C

In this paper, a perfectly random permutation denotes a random permutation
uniformly distributed among all possible permutations. Consequently, when re-
ferring to a random permutation, nothing is assumed about its distribution.

2.1 High Overview

The block cipher C : {0, 1}128 → {0, 1}128 is an iterated block cipher. It is
made of a succession of rounds, all identical in their structure. Each round is
parameterized by a round-key which is derived from the main 128 bits secret key
using a so-called key schedule algorithm. The structure of each round is made of
a (non-linear) substitution layer followed by a (linear) permutation layer. The
non-linear part of the round mixes the key bits with the text bits in order to
bring confusion (in the sense of [43]). The linear part dissipates the eventual
redundancy, bringing diffusion. Such an iterated block cipher is often referred
to as a substitution-permutation network (SPN). Several modern block ciphers
(such as AES [21] or SAFER [36]) follow this structure. In what follows, we
successively detail the SPN of C and its key schedule algorithm.

2.2 The Substitution-Permutation Network

In a nutshell, C follows the same SPN as AES [21], except that there is no round
key addition, that the fixed substitution box is replaced by independent perfectly
random permutations, and that the last round of C only includes the non-linear
transformation. This construction exactly corresponds to the one studied in [5].

C is made of r = 10 independent rounds R(1), . . . , R(r) : {0, 1}128 → {0, 1}128,
so that C = R(r) ◦ · · · ◦ R(1). A r round version of C will either be denoted by
C[r] or simply by C when the number of rounds is clear from the context. Each
round considers the 128 bit text input as a four by four array of bytes seen as
elements of the finite field GF(q) where q = 28. Consequently, if a ∈ {0, 1}128
denotes some input of the round transformation, we will denote a` (resp. ai,j)
the `-th (resp. the (i + 4j)-th) byte of a for 0 ≤ ` ≤ 15 (resp. 0 ≤ i, j ≤ 3) and
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call such an input a state. Except for the last one, each round R(i) successively
applies a non-linear transformation S(i) followed by a linear transformation L so
that R(i) = L ◦ S(i) for i = 1, . . . , r − 1. The last round R(r) excludes the linear
transformation, i.e., R(r) = S(r).

The non-linear transformation S(i) is a set of 16 independent and perfectly
random permutations1 of GF(q). Denoting S(i) = {S(i)

0 , . . . , S
(i)
15 } the 16 permuta-

tions of round i and a, b ∈ {0, 1}128 the input and the output of S(i) respectively,
we have b = S(i)(a) ⇔ b` = S

(i)
` (a`) for 0 ≤ ` ≤ 15. Depending on the level

of security/performance one wants to achieve, the round permutations can be
de-randomized (see Section 5).

The linear transformation L does not depend on the round number. It first
applies a rotation to the left on each row of the input state (considered as a four
by four array), over four different offsets. A linear transformation is then applied
to each column of the resulting state. More precisely, if a, b denote the input and
the output of L respectively, we have (considering indices modulo 4)

0
BB@

b0,j

b1,j

b2,j

b3,j

1
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0
BB@
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2.3 The Key-Schedule Algorithm

Generating a perfectly random permutation of {0, 1}8. As there are 28!
possible permutations of {0, 1}8, it is possible to define a one to one mapping
between [0 ; 28! − 1] and the set of permutations of {0, 1}8. The mapping we
choose is described in Table 1. We simply need to derive pseudo-random integers
in [0 ; 28!− 1] from the 128 bit secret key. As each of the ten rounds involves 16
permutations, we need 160 such integers, representing a total of 160·⌈log2(28!)

⌉
=

269440 pseudo-random bits.

Deriving an extended key from the secret key.

Definition 1. An extended key of C[r] is a set of 16 · r integers in [0 ; 28!− 1].

In order to derive an extended key from the 128 secret key, we need to
generate 16 · r pseudo-random integers of [0 ; 28! − 1]. We propose to use the
Blum-Blum-Shub pseudo-random number generator [16].
1 Note that a random 8 bit permutation is usually more biased than the substitution

box of AES [42, 52]. However this bias is key-dependent and thus does not rep-
resent a threat. Biases on the AES box are independent of the key and thus can
help to distinguish (reduced rounds of) AES from the perfect cipher when the key
is unknown. Exploiting the strong bias of the substitution boxes of C requires to
know the location of this bias, which is impossible without the knowledge of the
permutation that was used (i.e., of the key). For instance the maximum ELP of the
transformation made of a random key addition followed by the AES substitution
box is 2−6 whereas the perfectly random substitution boxes we use have a maximum
ELP of 1/(q − 1) ≈ 2−8. Intuitively, a cipher cannot become weaker when replacing
an (arbitrary) random permutation by a perfectly random permutation.
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Table 1. Defining a one to one mapping from integers between 0 and 28! onto the set
of permutations of {0, 1}8.

Input: An integer 0 ≤ κ < 28!
Output: A table π of size 256 such that π[0], . . . , π[255] ∈ {0, . . . , 255} is a
permutation of {0, 1}8 uniquely defined by κ
External Procedure: EucDiv(a,b) returns the quotient and remainder of the
Euclidean division of a by b.

0: q ← κ, π[0]← 0, π[1]← 1 , . . . , π[255]← 255
1: for m = 256 down to 1
2: (q, r)← EucDiv(q, m)
3: Swap the values of π at positions r and m
4: end for

Definition 2. A prime p is a strong-prime if (p− 1)/2 is prime. A prime p is
a strong-strong-prime if both p and (p− 1)/2 are strong-primes.

Let p and q be two (fixed) 1024-bit strong-strong-prime numbers2, and let n =
p · q. Considering the secret key k as a 128 bit integer, let {xi ∈ Z∗n : i =
−1, 0, 1, 2, . . . } be the sequence defined by

{
x−1 = k · 2894 + 21023 and
xi = x2

i−1 mod n for i ≥ 0.

Let BBS = a1b1a2b2 . . . be the pseudo-random bit string where ai, bi ∈ {0, 1}
respectively denote the least and most significant3 bits of xi. We will use BBS
to generate the 160 integers we need.

Dividing the BBS sequence into dlog2(28!)e-bit substrings, we can obtain
pseudo-random integers in [0 ; 2dlog2(2

8!)e− 1], thus sometimes larger than 28!. A
naive approach to deal with those too large integers is to discard the substrings
leading to such integers, thus having to generate dlog2(28!)e more bits each time
this happens. This strategy requires the generation of 160 · 2dlog2(2

8!)e/28! ≈
270 134 pseudo-random bits in average. More efficient approaches exits (e.g.,
discarding only a few bits instead of a whole block), but the improvement in
terms of efficiency is not worth the loss in terms of clarity.

3 Security Results: What is Known for Sure

3.1 C is resistant to Linear and Differential Cryptanalysis

Linear Cryptanalysis (LC) [37, 38, 45], aims at uncovering correlations between
linear combinations of plaintext and ciphertext bits. It is known that the data
2 Note that strong-strong-primes are always congruent to 3 modulo 4, i.e., are Blum

integers. We use strong-strong primes to ensure that the generator will have a long
period. See sections 3.5 and 6 for more details.

3 the most significant bit corresponds to being larger or smaller than (n− 1)/2.
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Table 2. Exact value of maxa 6=0,b ELPC(a, b) (and maxa 6=0,b EDPC(a, b)) for various
number of rounds.

2 rounds 3 rounds 4 rounds 5 rounds 6 rounds 7 rounds 8 rounds 9 rounds

2−33.98 2−55.96 2−127.91 2−127.91 2−127.99 2−127.99 2−128.00 2−128.00

complexity of LC is inversely proportional to the linear probability (LP) [17,39].
For given input/output masks a, b ∈ {0, 1}128 on C, LPC(a, b) =

(
2 Pr[a • X =

b•C(X)]−1
)
2, where the probability is taken over the uniformly distributed input

X ∈ {0, 1}128 and where • denotes a scalar product. LPC(a, b) is a function of
the random variable C (the randomness coming from the key). The block cipher
is considered to be provably secure against LC if, for all input/output masks
a, b ∈ {0, 1}128, the expected value ELPC(a, b) of the linear probability LPC(a, b)
(the mean being taken over all possible instances of the block cipher, that is,
over all possible keys) is close to the one of the perfect cipher C∗, i.e., close to
1/(q16 − 1) in our case.

Nyberg showed in [41] that the ELP of an iterated block cipher can be ex-
pressed as a sum of linear characteristics, which means in our case that for any
input/output masks c0, cr ∈ {0, 1}128,

ELPC[r](c0, cr) =
∑

c1,..,cr−1

r∏

i=1

ELPRi(ci−1, ci) ≥ max
c1,..,cr−1

r∏

i=1

ELPRi(ci−1, ci) (1)

where the sum is taken over all possible input/output masks on the individ-
ual rounds of C. Choosing a specific characteristic (i.e., a sequence of masks
c1, . . . , cr−1), it is possible to lower bound the value of ELPC[r](a, b). This is
usually enough to attack the block cipher: a lower bound on the ELP gives an
upper bound on the number of samples needed to perform the attack. However,
such a bound is not enough to prove the security of the system, as the cumulative
effect of linear hulls (the set of all intermediate masks for given input/output
masks) may lead to an attack much more efficient than expected4. In security
proofs of block ciphers, it is often considered without any formal justification
that one characteristic is overwhelming, so that the sum in (1) is of same order
than the max. In our case, for any input/output masks a, b ∈ {0, 1}128, the ex-
act value of ELPC(a, b) can be made arbitrarily close to the ELP of the perfect
cipher by taking a sufficient number of rounds. It is also possible to compute
the exact value of the ELP (see Table 2), and thus determine the exact minimal
number of rounds required to resist LC. See [5] for a proof of these results.

Differential Cryptanalysis (DC) [11, 12] looks for input/output difference
pairs occurring with non-negligible probability for the block cipher. The ef-
ficiency of DC is inversely proportional to the differential probability defined
by DPC(a, b) = Pr[C(X ⊕ a) = C(X) ⊕ b] for any input/output differences
a, b ∈ {0, 1}128 and uniformly distributed X ∈ {0, 1}128. Similarly to LC, the
4 Most block cipher designers choose to compensate for possible hull effects by adding

an arbitrary number of rounds. This is the case for AES [21], Camellia [2], CAST256
[1], Crypton [34], CS-Cipher [44], FOX [30] and many others.
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block cipher is considered to be secure against DC if for all (a, b) pairs, the ex-
pected value EDPC(a, b) of DPC(a, b) is close to that of the perfect cipher C∗,
i.e., to 1/(q16 − 1) in our case.

The development we propose for LC applies similarly for DC. Indeed, in
the case of Markov ciphers [32], an equation identical to (1) can be written
for the EDP coefficients. The concept of linear hulls translates into the one of
differentials. Again, security proofs tend to approximate the differentials using
a single differential characteristic. In our case, the EDP can be made arbitrarily
close to the optimal value. It is possible to compute the exact value of the EDP
(see Table 2), and thus to determine the exact minimal number of rounds to
resist DC. See [5] for a proof of these results.

Theorem 3. Considering C on r rounds and any non-zero a, b ∈ {0, 1}128 (ei-
ther considered as input/output masks or as input/output differences), we have

ELPC[r](a, b)−−−−→
r→∞ ELPC∗(a, b) and EDPC[r](a, b)−−−−→

r→∞ EDPC∗(a, b),

where ELPC∗(a, b) = EDPC∗(a, b) = (q16−1)−1. Moreover, four rounds of C are
enough to prove its security against linear (resp. differential) cryptanalysis as
maxa 6=0,b ELPC[4](a, b) = maxa 6=0,b EDPC[4](a, b) = 2−127.91.

3.2 C is resistant to Impossible Differentials

Impossible Differentials [8] attacks are a variation of DC. They consist in finding
pairs of input/output differences such that for any instance c of C we have
DPc(a, b) = 0. In other words, an input difference of a can never (i.e., for any
input and any key) lead to an output difference of b. In the case of C we can
prove that five rounds are enough to have no impossible differential5, i.e., given
any input/output masks a and b, there exists an instance c of C[5] (i.e., a key
defining 80 permutations) such that DPc(a, b) 6= 0.

Definition 4. Let a ∈ {0, 1}128 be an arbitrary state. The support of a is a four
by four binary array with 1’s at the non-zero positions of a and 0 elsewhere. It
is denoted supp(a). The weight of the support is denoted w(supp(a)) or simply
w(a), and is the Hamming weight of the support. A state is said to be of full
support when its weight is equal to 16.

Lemma 5. Let a, b ∈ {0, 1}128 be any two differences of full support. One sub-
stitution layer S is enough to ensure that there exists an instance s of S such
that DPs(a, b) 6= 0.

Proof. Considering the two plaintexts 0 and a, we can define the 16 substitution
boxes s0, . . . , s15 of one round such that si(0) = 0 and si(ai) = bi. As both ai

and bi are non-zero (a and b are of full support), both conditions can be verified
without being inconsistent with the fact that si is a permutation. ut
5 There exists an impossible differential on 4 rounds of AES leading to an attack on

6 rounds [18].
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Lemma 6. Let a ∈ {0, 1}128 be a non-zero difference of arbitrary support. Con-
sidering two full rounds of C (i.e., C = L(2)◦S(2)◦L(1)◦S(1)), there exists a differ-
ence b ∈ {0, 1}128 of full support and an instance c of C such that DPc(a, b) 6= 0.

Proof (sketch). For simplicity reasons, we restrict ourselves to the case where
the support of a is of weight 1. Without loss of generality, assume a0 6= 0 while
ai = 0 for i = 1, . . . , 15. We consider the two plaintexts to be 0 and a. Letting
S

(1)
i (0) = 0 for all i, we have L(1) ◦S(1)(0) = 0. By carefully choosing S

(1)
0 (a0), we

can make sure that L(1) ◦ S(1)(a) has a support of weight 4 (on the first columns
of the four by four array). Proceeding in the same manner in the second round,
we can make sure that C(0) = 0 and b = C(a) is of full support. ut

Consider any two differences a, b ∈ {0, 1}128 and a five round version of
C = S(5) ◦ L(4) ◦ S(4) ◦ L(3) ◦ S(3) ◦ L(2) ◦ S(2) ◦ L(1) ◦ S(1). From Lemma 6, there
exists an instance cstart of the first two rounds L(2) ◦ S(2) ◦ L(1) ◦ S(1) and a
difference d of full support such that DPcstart(a, d) 6= 0. Starting from the end,
there exists an instance cend of S(5) ◦ L(4) ◦ S(4) ◦ L(3) and a difference e of full
support such that DPc−1

end(b, e) 6= 0, so that DPcend(e, b) 6= 0. From Lemma 5,
there exists an instance cmid of S(3) such that DPcmid(d, e) 6= 0. Consequently,
DPcend◦cmid◦cstart(a, b) 6= 0.

Property 7 (Provable security of C against Impossible Differentials).
Five rounds of C are enough to ensure that no impossible differential exists.

3.3 C is resistant to 2-Limited Adaptive Distinguishers

In the Luby-Rackoff model [35], an adversary has an unbounded computational
power and is only limited by its number of queries to an oracle O implementing
a random permutation. Let A be an adversary in this model. The goal of A is
to guess whether O is implementing an instance drawn uniformly among the
permutations defined by the block cipher C or among all possible permutations,
knowing that these two events are equiprobable and that one of them is eventu-
ally true. Denoting C∗ a perfectly random permutation on {0, 1}128 (i.e., C∗ is
the perfect cipher), the ability of the adversary to succeed is measured by means
of its advantage.

Definition 8. The advantage of an adversary A of distinguishing two random
permutations P0 and P1 is defined by

AdvA(P0, P1) = Pr
[A(P0) = 0

]− Pr
[A(P1) = 0

]
.

In this model, the most powerful adversary performs a d-limited adaptive attack,
where d denotes the number of oracle queries. Theorem 14 in [5] gives a loose
bound against 2-limited adaptive distinguishers. Using the decorrelation theory,
we manage to obtain the exact value of the advantage of the best distinguisher.

A Dash of Decorrelation Theory. We briefly recall the results from the decor-
relation theory on which our proofs are based. For the sake of simplicity, we re-
strict to block ciphers defined on {0, 1}128. Given a block cipher B, the d-wise dis-
tribution matrix [B]d is a 2128d× 2128d matrix defined by [B]d(x1,...,xd),(y1,...,yd) =
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PrB [B(x1) = y1, . . . , B(xd) = yd]. Theorem 10 in [47] tells us that the advantage
of the best d-limited non-adaptive distinguisher is given by

AdvAna(B, C∗) =
1
2
|||[B]d − [C∗]d|||∞

=
1
2

max
x1

· · ·max
xd

∑
y1

· · ·
∑
yd

∣∣∣[B]d(x1,...,xd),(y1,...,yd) − [C∗]d(x1,...,xd),(y1,...,yd)

∣∣∣ .

Similarly, Theorem 11 in [47] gives the advantage of the best d-limited adaptive
distinguisher

AdvA(B, C∗) =
1
2
‖[B]d − [C∗]d‖a

=
1
2

max
x1

∑
y1

· · ·max
xd

∑
yd

∣∣∣[B]d(x1,...,xd),(y1,...,yd) − [C∗]d(x1,...,xd),(y1,...,yd)

∣∣∣ .

Finally, if A and B are two independent random permutations, [A ◦ B]d =
[A]d × [B]d. For an iterated block cipher with r independent rounds, it is thus
enough to compute the distribution matrix of one round and to raise it to the
power r.

Computing [C]2. C is built as a succession of independent substitution and
linear layers S(r) ◦L◦S(r−1) ◦· · ·◦L◦S(1). Therefore, as all the substitution layers
have the same distribution matrix [S]2, the distribution matrix of C is given by
[C]2 = [S]2 × [L]2 × [S]2 × · · · × [L]2 × [S]2.

Let q = 28 be the size of the field. For a perfectly random substitution box
S we have Pr[S(u) = v ∩ S(u′) = v′] = q−1 if u = u′ and v = v′, Pr[S(u) =
v ∩ S(u′) = v′] = q−1(q − 1)−1 if u 6= u′ and v 6= v′, and 0 otherwise. As the 16
substitution boxes of S are independent, we obtain

[S]2(x,x′),(y,y′) = 1supp(x⊕x′)=supp(y⊕y′)q
−16(q − 1)−w(x⊕x′),

where we recall that w(x ⊕ x′) denotes the Hamming weight of the support
of x ⊕ x′. We note that [S]2 only depends on the respective supports of the
input and output differences. We will use this property to dramatically reduce
the size of the matrices we have to manipulate. Denoting SP the 2256 × 216

matrix such that SP(u,u′),γ = 1supp(u⊕u′)=γ and PS the 216 × 2256 matrix such
that PSγ,(u,u′) = 1supp(u⊕u′)=γ q−16(q − 1)−w(γ), we obtain PS × SP = Id and
SP × PS = [S]2. As the last round of C misses the linear operation, we deduce
that [C]2 = SP × L

r−1 × PS, where L = PS × [L]2 × SP is a 216 × 216 matrix
indexed by supports. Noting that [L]2(x,x′),(y,y′) = 1L(x)=y1L(x′)=y′ and using the
fact that L is linear, it is possible to expand the expression of L and obtain
Lγ,γ′ = (q − 1)−w(γ)

∑
u 1supp(u)=γ1supp(L(u))=γ′ . The matrix L happens to be

precisely the one used in the expression of the expected linear probability of C

given in Theorem 6 in [5]. With our notations, the theorem states that for all
support γ, γ′ and any states u, u′ of respective support γ and γ′, we can write



Dial C for Cipher 9

(L
r−1

)γ,γ′ = (q − 1)w(γ′)ELPC[r](u, u′), where ELPC[r](u, u′) is the expected
linear probability on r rounds of C given an input (resp. output) mask u (resp.
u′). Because ELPC obviously only depends on the supports γ and γ′ of u and
u′, we will denote it from now on ELPC(γ, γ′). From this, we easily obtain the
following property.

Property 9. Let q = 28 and let ELPC(γ, γ′) be the expected linear probability
of r > 1 rounds of C given an input (resp. output) mask of support γ (resp.
γ′). The 2-wise distribution matrix of r rounds of C is such that [C]2(x,x′),(y,y′) =
q−16 ELPC(supp(x⊕ x′), supp(y ⊕ y′)).

Computing AdvA and AdvAna . The expression we just obtained for [C]2

leads to the following expression for ‖[C]2 − [C∗]2‖a:

max
x

∑
y

max
x′

∑

y′

∣∣∣q−16ELPC(supp(x⊕ x′), supp(y ⊕ y′))− [C∗]2(x,x′),(y,y′)

∣∣∣ .

In the case where x = x′, the inner sum of the previous equation is 0 as
q−16ELPC(0, 0) = [C∗]2(x,x),(y,y) = q−16 and as ELPC(0, γ′) = [C∗]2(x,x),(y,y′) = 0
when γ′ = supp(y ⊕ y′) and y′ 6= y. We obtain

‖[C]2 − [C∗]2‖a = 1
q16 max

x

∑
y

max
γ 6=0

∑

γ′ 6=0

∣∣∣ELPC(γ, γ′)− 1
q16−1

∣∣∣
∑

y′ 6=y

1supp(y⊕y′)=γ′

= max
γ 6=0

∑

γ′ 6=0

∣∣∣ELPC(γ, γ′)− 1
q16−1

∣∣∣ (q − 1)w(γ′).

Using similar techniques, one can derive the exact same expression for |||[C]2 −
[C∗]2|||∞. This implies that, when limited to two queries, an adaptive distin-
guisher against C is not more powerful than a non-adaptive one. This is not
surprising as the first query does not leak any information. A single substitution
layer S is enough to have such a result.

Theorem 10. The respective advantages of the best 2-limited non-adaptive dis-
tinguisher Ana and of the best 2-limited adaptive distinguisher A against r > 1
rounds of C are such that AdvA(C, C∗) = AdvAna(C, C∗) and (taking the sum
over all non-zero supports)

AdvA(C,C∗) = 1
2 max

γ

∑

γ′ 6=0

∣∣ELPC(γ, γ′)− ELPC∗(γ, γ′)
∣∣(q − 1)w(γ′).

Practical computations can take into account the fact that ELPC(γ, γ′) actually
only depends on the 4 weights of the diagonals of γ and on those of the columns
of γ′ (from Theorem 12 in [5], see Appendix A). Results of our practical compu-
tations are reported in Table 3 (together with the corresponding upper bounds
obtained in [5]). Finally, we can obtain the following corollary from Theorem 3
and Theorem 10.

Corollary 11. The advantage of the best 2-limited adaptative distinguisher A
against C[r] tends towards 0 as r increases, i.e., AdvA(C[r], C∗)−−−−→

r→∞ 0.



10 Thomas Baignères and Matthieu Finiasz

Table 3. Exact values of the advantage of the best 2-limited adaptive distinguisher
for several number of rounds r compared to the bounds given in [5].

r 2 3 4 5 6 7 8 9 10 11 12

Bound 294.0 272.0 2−4.0 2−4.0 2−24.2 2−46.7 2−72.4 2−95.9 2−142.8 - -

Exact 1 2−4.0 2−23.4 2−45.8 2−71.0 2−126.3 2−141.3 2−163.1 2−185.5 2−210.8 2−238.9

3.4 C is resistant to Iterated Attacks of Order 1

Iterated attacks of order 1 [46, 47] are very similar to LC except that the bit
of information retrieved from each plaintext/cipher pair does not necessarily
have to be derived in a linear way. Such attacks have proven to be sometimes
much more powerful than linear cryptanalysis6. According to Theorem 18 in [47],
proving resistance against 2d-limited adaptive distinguishers is enough to prove
resistance to iterated attacks of order d. We can deduce that C is immune to
any iterated attack of order 1.

Property 12 (Provable Security of C against iterated attacks of order
1). Seven rounds of C are sufficient to obtain provable security against iterated
attacks of order 1.

3.5 All Substitution Boxes of C are Indistinguishable from
Independent Perfectly Random Permutations

A pseudo-random bit generator is said to be cryptographically secure if no
polynomial-time statistical test can distinguish an output sequence of this gener-
ator from a perfectly random bit string with a significant advantage [51]. Such a
generator can always be distinguished if the length of the bit string is longer than
the generator’s period. We need to prove that the Blum-Blum-Shub generator
we use has a period long enough to generate a complete extended key.

We know from the original paper [15] that the period of the xi’s sequence of
the BBS generator divides λ(λ(n)) (where λ denotes the Carmichael function) if
both p and q are strong-primes and both p and q are Blum integers. Obviously,
the period of the bit string output by BBS divides the period of the xi’s. By
making sure that λ(λ(n)) does not contain small factors, we can prove that this
length will be large enough. This can be done by choosing strong-strong-primes p
and q. In such a case we can write p = 2p1+1 = 4p2+3 and q = 2q1+1 = 4q2+3,
and obtain λ(λ(n)) = λ(lcm(2 p1, 2 q1)) = λ(2 p1 q1) = lcm(2 p2, 2 q2) = 2 p2 q2.
Therefore, if the period of the bit string is not 2, it is necessarily long enough to
generate a complete extended key as min(p2, q2) À 300 000.

It is known that the original Blum-Blum-Shub pseudo-random bit generator
is cryptographically secure [15,16]. Vazirani and Vazirani showed that outputting
both the least and most significant bits of the quadratic residues produced by
the generator is also cryptographically secure [48,49].
6 see for example [4, pg. 9], where an example of a biased source is given. Although

impossible to distinguish from a true random source with a linear distinguisher, this
source is easily broken by a non-linear distinguisher
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Definition 13. Let s0 and s1 be two bit strings, such that s0 is obtained using
the BBS pseudo-random generator and s1 is perfectly random. The advantage of
an adversary A trying to distinguish s0 from s1 is given by

AdvBBS
A = Pr

[A(s0) = 0
]− Pr

[A(s1) = 0
]
.

Assuming that the problem of deciding the quadratic residuosity modulo n
is hard (an assumption we will refer to as the quadratic residuosity assumption
[27]), we know that AdvBBS

A can be made arbitrarily small by increasing the
value of n. The key schedule of C relies on the BBS generator and makes sure
that the mapping from the set of 2128 keys to the set of possible seeds of the
pseudo-random generator is injective. Therefore, the pseudo-random sequence
produced by the key schedule of C is indistinguishable from a perfectly random
binary sequence of the same length. The method we use to convert this binary
sequence into substitution boxes makes sure that for an unbiased sequence one
obtains an unbiased set of substitution boxes. By choosing a suitable n, the
substitution boxes of C can thus be made indistinguishable from independent
perfectly random permutations.

3.6 The Keyed C is Not Less Secure than C

Definition 14. Let k0 and k1 be two extended keys of C, such that k0 is obtained
through the key schedule seeded by a perfectly random 128 bit key and k1 is
perfectly random. The advantage of an adversary A trying to distinguish k0 from
k1 is given by

Advkey
A = Pr

[A(k0) = 0
]− Pr

[A(k1) = 0
]
.

Property 15. Let k0 and k1 be two extended keys as in Definition 14 and s0

and s1 be two bit strings as in Definition 13. An adversary A able to distinguish
k0 from k1 with probability p can distinguish s0 from s1 with probability p′ ≥ p,
i.e., Advkey

A ≤ AdvBBS
A .

Proof. Given sb (b ∈ {0, 1}), the adversary can derive an acceptable extended
key kb. From this, the adversary has an advantage Advkey

A of guessing the correct
value of b and thus obtains a distinguisher on BBS with advantage Advkey

A . ut
The strongest notion of security for a block cipher is its indistinguishability
from a perfectly random permutation C∗. Proving the security of C against a
distinguishing attack performed by A consists in upper bounding AdvA(C, C∗).

Let k0 and k1 be two random extended keys of C picked as in Definition 14,
defining two random instances of C denoted Ckey and Crand respectively. Obvi-
ously, distinguishing Ckey from Crand is harder than distinguishing k0 from k1, so
that AdvA(Ckey, Crand) ≤ Advkey

A .
Assume there exists a distinguishing attack on Ckey that does not work on

Crand such that, for an adversaryA using it, AdvA(Ckey, C
∗) ≥ 2·AdvA(Crand, C

∗).
From the triangular inequality we have AdvA(Ckey, C

∗) − AdvA(Crand, C
∗) ≤

AdvA(Ckey, Crand) so that AdvA(Ckey,C
∗) ≤ 2 ·AdvA(Ckey,Crand) ≤ 2 ·Advkey

A .
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In conclusion, using Property 15, any distinguishing attack twice as efficient
on Ckey than on Crand gives an advantage which is bounded by 2 ·AdvBBS

A . Under
the quadratic residuosity assumption, such an attack cannot be efficient.

Although the quadratic residuosity problem is not equivalent to the problem
of factoring p · q, the best known attacks require it. The exact cost of this factor-
ization is not obvious. For a given symmetric key size, there are several estimates
for an equivalent asymmetric key size [31]. According to the NIST recommen-
dations, a 2048 bit modulus is equivalent to a 112 bit symmetric key [24].

Property 16 (Provable security of Ckey). Under the quadratic residuosity
assumption, C used with the key schedule described in Section 2.3 is as secure
as C used with independent perfectly random substitution boxes.

3.7 The Keyed C has no Equivalent Keys

Two block cipher keys are said to be equivalent when they define the same
permutation. It is easy to build equivalent extended keys for C (when not using
the key schedule). Consider an extended key k1 defining a set of 160 substitution
boxes such that the first 32 are the identity. We consider a second extended
key k2 defining another set of substitution boxes such that the last 128 are
identical to that defined by k1 and such that the first 16 boxes simply xor a
constant a ∈ {0, 1}128 to the plaintext, the remaining boxes (in the second
layer) correcting the influence of a by xoring L(a) to its input. Although they
are different, k1 and k2 define the same permutation. Such a property could be
a threat to the security of C. If too many such extended keys were equivalent,
it could be possible to find equivalent 128 bit keys for Ckey. We can prove that
the probability that two 128 bit equivalent keys exist is negligible.

The probability that two equivalent 128 bit keys exist depends on the number
of equivalence classes among the extended keys. Considering a one round version
of C, it can be seen that no equivalent extended keys exist. Consequently, there
are at least (28!)16 ≈ 226944 equivalence classes. Adding rounds (thus increasing
the extended key size) cannot decrease this number of classes. Assuming that
the key schedule based on BBS uniformly distributes the extended keys obtained
from the 128 bit keys among these classes, the probability that two keys fall into
the same class can be upper bounded by

1− e−(2128)2/(2∗226944) ≈ 2−26689.

Property 17 (Ckey has no Equivalent Keys). The probability that two 128
bit keys lead to the same instance of C is upper bounded by 2−26689.

4 Security Results: What we Believe to be True

4.1 C is (not that) Resistant to Saturation Attacks

Saturation attacks [20] are chosen-plaintext attacks on byte-oriented ciphers.
An attack on four rounds of AES can be performed [22] by choosing a set of 28
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plaintexts equal on all but one byte. After 3 rounds of AES, the xor of all the
corresponding ciphertexts is 0. This makes it easy to guess the key of the fourth
round, as all round key bytes can be guessed independently.

In our case, the property on the third round output still holds. Nevertheless,
it only allows to exclude 255 out of 256 keys for each substitution box. This was
enough for AES, but in our case an adversary would still be left with 255! valid
substitution boxes, so that a more subtle approach is needed.

In [13], Biryukov and Shamir present an attack on SASAS, a generic con-
struction with three rounds of random key-dependent substitution boxes linked
by random key-dependent affine layers. Following their approach, the saturation
attacks on the AES can be adapted to C but with a non-negligible cost. In this
approach, an exhaustive search on 8 bits (as necessary with the AES) is replaced
by a linear algebra step which requires 224 operations. The additional workload
is thus of the order of 216. This overhead implies that any attack with a com-
plexity higher than 2112 becomes infeasible. In particular the saturation attacks
on 7 rounds of the AES [23] should not apply to C.

We believe that saturation-like attacks are the biggest threat for reduced
rounds versions of C. Chances that such attacks apply to 10 rounds are however
very low.

4.2 C is Resistant to a Wide Variety of Attacks

Algebraic attacks consist in rewriting the whole block cipher as a system of al-
gebraic equations. The solutions of this system correspond to valid plaintext,
ciphertext, and key triples. Algebraic attack attempts on AES take advantage
of the simple algebraic structure of the substitution box [19]. In our case, sub-
stitution boxes can by no means be described by simple algebraic forms, and
thus, algebraic attacks will necessarily be much more complex against C than
against AES. We do believe that they will be more expensive than exhaustive
key search.

Slide attacks [14] exploit a correlation between the different round keys of a
cipher. These attacks apply for example against ciphers with weak key schedules
or against block ciphers with key-dependent substitution boxes and periodic key
schedules. C uses independent perfectly random substitution boxes, so that all
rounds are independent from each other. Slide attacks cannot apply here.

The boomerang attack [50] is a special type of differential cryptanalysis. It
needs to find a differential characteristic on half the rounds of the cipher. Four
rounds of C being sufficient to be provably secure against DC, 10 rounds are nec-
essarily sufficient to resist the boomerang attack. Similarly, neither differential-
linear cryptanalysis [10,33] nor the rectangle attack [9] apply to C.

5 Reducing the Extended Key Size

The main drawback in the design of C is the huge amount of pseudo-random
bits required for the key schedule. Having to generate hundreds of thousands of
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bits with the Blum-Blum-Shub generator is unacceptable for many applications.
We propose here an adaptation of C, enjoying the same security proofs, but
requiring much less pseudo-random bits.

Using Order 2 Decorrelated Substitutions Boxes. As stated in [5], the
bounds on the LP and DP obtained when replacing the substitution boxes of
the AES by independent perfectly random permutations remain exactly the same
if one uses independent order 2 decorrelated substitution boxes instead. This is
also the case concerning resistance against 2-limited adaptive distinguishers and,
as a consequence, resistance against iterated attacks of order 1.

Suppose we have a family D2 of order 2 decorrelated substitution boxes. Us-
ing the Blum-Blum-Shub generator and the same method as for the standard
C key schedule, we can generate a set of 160 substitution boxes from D2 indis-
tinguishable from 160 randomly chosen D2 boxes. Again, it is possible to prove
that any attack on a keyed C using substitution boxes in D2 requires to be able
to distinguish the output of the Blum-Blum-Shub generator from a perfectly
random binary stream.

Hence, apart from the resistance to impossible differentials, all proven secu-
rity arguments of C remain untouched when using boxes of D2. However, each
time the key schedule required log2 256! bits from the Blum-Blum-Shub genera-
tor, it only requires log2 |D2| now.

A ⊕ B
X

: a Good Family of Order 2 Decorrelated Substitution Boxes.
From what we have just seen, whatever the family D2 we use, security results
will still hold. For optimal efficiency, we need to select the smallest possible such
family. It was shown in [3] that any family of the form D2 =

{
X 7→ A⊕B ·S(X);

A,B ∈ {0, 1}8, B 6= 0
}

where S is any fixed permutation of GF(28) (and where
· represents a product in GF(28)) is decorrelated at order 2.

We propose to use the family D2 =
{
X 7→ A⊕ B

X ;A,B ∈ {0, 1}8, B 6= 0
}
.

This family contains 216 elements and the substitution boxes can be chosen
uniformly in D2 from 16 bits of the Blum-Blum-Shub generator. The first 8 bits
define A, the last 8 define B. So, the whole key schedule for ten rounds of C only
requires 2 560 pseudo-random bits and should be about 100 times faster than
an unmodified C with perfectly random permutations. One may believe that
this construction is very similar to that of the AES (assuming that the round
keys are independent and perfectly random). Nevertheless, deriving the AES
construction from ours requires to set B = 1. The family obtained in this case
is no longer decorrelated at order 2, so that, unfortunately, none of the security
results we obtained for C directly applies to the AES.

Security Considerations. Even if this might not be the case for any order 2
decorrelated family of substitution boxes, it is interesting to note that C built
on the family D2 we chose is also resistant to impossible differentials. As for
perfectly random permutations, lemmas 5 and 6 can both be proven for boxes
of the form A⊕ B

X .
None of the security results we obtained requires using perfectly random

permutations and substitution boxes of the form A⊕ B
X are enough. We believe
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that achieving the same security level with perfectly random permutations is
possible with fewer rounds. More precisely, it may be possible to obtain a trade-
off between the number of rounds and the level of decorrelation of the random
substitution boxes. Fewer rounds lead to fast encryption/decryption procedures
but require a higher level of decorrelation. In this case, more pseudo-random bits
are necessary to generate each substitution box, and this may lead to a (very)
slow key schedule. The best choice depends on the application.

6 Implementation and Performances

Implementation. As seen in Section 2.3, before being able to use the Blum-
Blum-Shub generator, one needs to generate two strong-strong-primes p and q,
which is not an easy operation: it has a complexity of O((log p)6). For primes
of length 1024, this takes one million times more operations than generating a
prime of the same size. Some optimizations exist to improve the constant factor
in the prime number generation [29] and can become very useful for strong-
strong-prime numbers.

When implementing C, the same optimizations as for AES are possible. In
particular, one round of C can be turned into 16 table look-ups and 12 xors.
Basically, the output can be split in four 32 bits blocks, each of which only
depends on four bytes of the input. However, all the tables of C are different
from each other. This is the only reason why encrypting/decrypting with C

could be slower than with AES. Considering standard 32-bits computers, this
has little influence in practice as the 160 tables still fit in the cache of the CPU.
The required memory is 160 · 256 · 4 = 160kBytes. This however becomes an
issue when implementing C on a smartcard (but who wants to implement Blum-
Blum-Shub on a smartcard anyway?) or on a CPU with 128 kBytes of cache.

We programmed C in C using GMP [25] for the key schedule operations. On
a 3.0 GHz Pentium D, we obtain encryption/decryption speeds of 500 Mbits/s.
Generating the 160 substitution boxes from the 128 bit secret key takes 2.5s
when using perfectly random permutations and 25ms when using the A ⊕ B

X
construction. Note that to decrypt, it is also necessary to invert the substitution
boxes. This takes a negligible time compared to the generation of the extended
key, which is the most expensive step of the key schedule.

Applications. Given the timings we obtained, it appears that using C for en-
cryption purpose is practical, in particular with the shortened key schedule. Of
course, a key schedule of 25ms is much slower than most existing key sched-
ules but is still acceptable in a large majority of applications. This can become
negligible when the amount of data to encrypt becomes large.

The 2.5s obtained for the “most secure” version using perfectly random sub-
stitution boxes is suitable for only a few very specific applications. However, we
believe that in the case where a very high security level is required, this price is
not that high. This might not be an issue in certain cases when the key schedule
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is run in parallel with some other slow operation, like for hard disk drive encryp-
tion (for which the key schedule is performed only once during a boot sequence
which already takes several seconds).

In some other circumstances however, C is not usable at all. For example,
when using it as a compression function in a Merkle-Damg̊ard construction, as
one key schedule has to be performed for each block (hashing a 1 MByte message
would take more than one day).

Further Improvements. It is known that outputting α(n) = O(log log n)
bits at each iteration of the Blum-Blum-Shub generator is cryptographically se-
cure [49]. However, for a modulus n of given bit length, no explicit range for α(n)
was ever given in the literature [40]. Finding such a constant could considerably
improve the speed of the key schedule of C.

Another possible improvement to the key schedule would be to rely on some
other cryptographically secure pseudo-random generator. The pseudo-random
generator on which the stream cipher QUAD [6,7] is based may be a good can-
didate: it offers provable security results and achieves speeds up to 5.7Mbits/s.
Using such a construction would certainly improve the key schedule time by an
important factor, so that the “most secure” version of C might compare to the
current version using derandomized substitution boxes.

7 Conclusion

We have introduced C, a block cipher provably secure against a wide range of
attacks. It is as fast as AES for encryption on a standard workstation. Provable
security requires a cryptographically secure key schedule. Consequently, the key
schedule of C is too slow for some applications.

As far as we know, C is the first practical block cipher to provide tight security
proofs that do take into account the key schedule. It is proven that C resists:
linear cryptanalysis (taking into account the possible cumulative effects of a
linear hull), differential cryptanalysis (similarly considering cumulative effects of
differentials), 2-limited adaptive distinguishers, iterated attacks of order 1, and
impossible differentials. We also give strong evidence that it also resists: algebraic
attacks, slide attacks, the boomerang attack, the rectangle attack, differential-
linear cryptanalysis, and, to some extent, saturation attacks. From our point of
view, the most significant improvement that could be made on C would be to
give a bound on the advantage of the best d-limited adversary for d > 2.

“Mind you, even I didn’t think of that one... extraordinary.”
Chief Insp. Hubbard
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A Further Reducing the Matrix Size

From Theorem 12 in [5], we know that ELPC(γ, γ′) actually only depends on
the weights of the diagonals of γ and of the columns of γ′. Respectively denoting
ν = (ν0, ν1, ν2, ν3) and µ = (µ0, µ1, µ2, µ3) those two sets of 4 weights, we obtain
from Theorem 10 that

2AdvA = max
γ

∑

γ′ 6=0

∣∣∣ELPC(γ, γ′)− ELPC∗(γ, γ′)
∣∣∣ (q − 1)w(γ′)

= max
ν

∑

µ6=0

∣∣∣ELPC(ν, µ)− ELPC∗(ν, µ)
∣∣∣ (q − 1)w(µ)B[µ],

where B[µ] =
(

4
µ0

)(
4

µ1

)(
4

µ2

)(
4

µ3

)
denotes the number of distinct supports having

a column weight pattern equal to µ. Consequently, the final computation can be
reduced to computations on 625× 625 matrices.


