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Abstract. In 1984, C.H. Bennet and G. Brassard proposed a new proto-
col aimed to solve the problem of symmetric cryptographic key exchange.
This protocol was called BB84 after the name of its authors. While a tra-
ditional method would rely on public key cryptography (like RSA), the
BB84 protocol takes benefit of the laws of quantum mechanics, like for
example the fact that any quantum measurement can perturb the sys-
tem. Traditional public key algorithms security often rely on a typical
hard mathematical problem. It is well known for example that the ability
to factorize easily any number would make the usage of RSA completely
insecure. Quantum Key Exchange (QKE) protocols security cannot be
proved in a similar way. In this work, we will try to give an overview
of security proofs of quantum key exchange protocols, focusing on the
BB84 protocol.

1 Introduction

Since the late 70’s, several public key cryptographic algorithms have been pro-
posed. Diffie and Hellman [9] first came with this concept in 1976. Since that
time, several other public key cryptosystems were invented, such as the well
known RSA [21], ElGamal [10] or Rabin [20] cryptosystems. Roughly, the scope
of these algorithms is to allow the secure exchange of a secret key that will
later on be used to encrypt a larger amount of data. All these algorithms share
one particularity, namely that their security rely on some mathematical problem
which is supposed to be hard (computationally speaking) to solve. For example,
it is well known that the ability to factorize easily the product of two large primes
without any indication about the primes, would lead to break the RSA cryp-
tosystem. With current technology, the best known factoring algorithm is the
Number Field Sieve [12]1. Currently RSA cryptosystems using a large enough
public key are still secure against it. Pessimistic minds argue that, as the com-
putational power increases over time, a cryptosystem which is secure today may
be insecure tomorrow. Also it is possible (under the assumption that no better

1 In 1994, P.W. Shor [22] came up if a factoring algorithm way more powerful than the
Number Field Sieve as it runs in polynomial time, but has the drawback of requiring
a quantum computer which practical conception with today technology is (to the
best of our knowledge) still unrealistic.



factoring algorithm is discovered) to consider that an RSA cryptosystem using
a large enough key will remain unbreakable long enough to ensure that the pro-
tected information will be deprecated by the time the cryptosystem is broken,
the threat seems to be strong enough to lead current research in the field towards
new solutions to improve the security of cryptographic public key exchange.

In 1984, C.H. Bennet and G. Brassard [2] proposed a new key exchange
protocol, called BB84 after their name, which takes advantage of the physical
properties of quantum channels. At that time they could only prove its security
against practical attacks, i.e. that could be implemented with existing technolo-
gies. Quantum Key Exchange (QKE) security against the most general type of
attacks, i.e. those where the enemy has access to an unlimited computational
power2, has been widely studied during the past few years and several proofs
have been proposed [4, 13, 14].

In the next section we will describe the BB84 Quantum Key Exchange pro-
tocol over noiseless channels and give the reason why it is secure. As realistic
channels are inevitably submitted to noise, the protocol is obviously unrealistic.
Although other proofs had already been proposed, P.W. Shor and J. Preskill
[24] came up with the first simple proof of the security of the BB84 protocol
over noisy channels. This proof relies on the security of another QKE proto-
col which relies itself on a fundamental topic of Quantum Information Theory,
namely Quantum Error Correcting Codes. This topic will be explored in Sect. 3.
Sections 4 and 5 will successively prove the security of the QKE protocol using
Quantum Error Correcting Codes and show why this implies the security of the
BB84 protocol over noisy channels.

2 The BB84 Protocol over Noiseless Channels

We introduce three main characters: Alice and Bob, who look forward to share
a secret key, and Eve, whose objective is to obtain some information about this
secret key. Alice and Bob have access to a quantum channel (which we consider
to be noiseless in this section) and to a classical authenticated channel. Eve can
act freely on the quantum channel, but can only listen to what happens on the
classic channel. Therefore it is impossible for Eve to modify the information sent
through the classical channel. On the contrary, we consider that she has total
access to the quantum channel, keeping in mind that

– according to the No-Cloning Theorem of Quantum Mechanics, she won’t be
able to duplicate the quantum information, and that

– according to the Heisenberg Uncertainty Principle, she won’t be able to
completely measure a quantum state.

2 Including quantum computers.



The goal of the protocol is to make sure that the knowledge of Eve about a
secret key shared between Alice and Bob is very small. So, with high probabil-
ity, either Alice and Bob will agree on a key about which Eve knowledge is very
small, either Alice and Bob will decide to abort the protocol.

Alice chooses at random a basis among

B0 = {|0〉 , |1〉} and B1 =

{ |0〉+ |1〉√
2

,
|0〉 − |1〉√

2

}

.

Then she chooses a bit at random. If the bit is 0, she sends the first state of
her basis to Bob, if it is 1 she sends the second state of her basis. She iterates
the procedure (that is, choosing a random basis and a random bit) N times and
sends the N resulting states to Bob.

When receiving the N states, Bob measures them randomly in either B0 or
B1 and obtain an N bits string (called the raw key). Next, Alice and Bob reveal
the sending and receiving basis (but not the result they obtained). When both
basis coincide, they keep the corresponding bit of their string. When they dif-
fer, they discard the corresponding bit. Therefore they obtain a string of n bits
(n ≤ N) that they agree on (called the sifted key). Notice that whenever Eve
introduces errors, Alice and Bob can notice it easily as their respective sifted
key would differ, so that any subsequent communication making use of it to
crypt and decrypt would fail3. But in the worst possible case, Eve would have
succeeded in grabbing say t bits of information on the sifted key without per-
turbing the quantum transmission4. In order to bound Eve’s knowledge about
their secret key, Alice and Bob can apply a Privacy Amplification scheme [3, 8].

Privacy Amplification will allow Alice and Bob to agree on a secret key, on
which Eve will have bounded information. One possibility makes use of universal
hashing [7].

Definition 1. A class H of functions {0, 1}n → {0, 1}r is universal if, for any

distinct x1 and x2 in {0, 1}n, the probability that h(x1) = h(x2) is at most 2−r

when h is chosen uniformly at random from H.

If we denote x the n bits sifted key Alice and Bob agreed on, and if we con-
sider that Eve has at most t information bits about it, the following result is
proven [3]: let s < n− t be a positive safety parameter, and let r = n− t− s. If
Alice and Bob choose h(x) as their secret key, where h is chosen at random from

3 As this can seem very crude, we can also consider another scenario where Alice
intersperse the key bits with check bits that will later be used to detect errors. If
any error is detected, the entire sifted key can be discarded. More about check bits
in Sect. 5.

4 Imagine for example that she chose t times the right measurement basis to mea-
sure t different states of the raw key, although the probability of this happening is
exponentially low.



a universal class of hash functions from {0, 1}n to {0, 1}r, then Eve’s expected
information about the secret key h(x), given h and her t bits of information, is
less than 2−s/ ln 2. Alice and Bob therefore compute the hashed value of x in
order to obtain a secret key on which Eve has bounded information.

We can formalize the reason why Eve cannot gain information about the
states Alice sends on the quantum channel, without taking the risk to perturb
the signal. Suppose Alice chooses B0 to encode the uniformly distributed random
bit. The density matrix describing the state Eve has access to can be computed:

ρ(B0) =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| = 1

2

(

1 0
0 1

)

. (1)

In the case Alice chooses B1, we obtain

ρ(B1) =
1

4

(

1 1
1 1

)

+
1

4

(

1 −1
−1 1

)

=
1

2

(

1 0
0 1

)

. (2)

Thus, because the density matrices for the two basis are equal, Eve cannot
measure which basis Alice has chosen to encode her bit. As a consequence she can
only choose at random a basis for her own measurement and therefore take the
risk to disturb the system. The problem is: what happens on a realistic channel
where noise will disturb the states anyway ?

3 Quantum Error Correcting Codes: CSS codes

Quantum error-correcting codes are subspaces of the Hilbert space C
2n

which
are protected from errors in a small number of these qubits, so that any such er-
ror can be measured and subsequently corrected without disturbing the encoded
state5. In this section we will make use of the theory of classical linear codes
in order to study a large class of quantum error correcting codes known as the
Calderbank-Shor-Stean (CSS) codes [6].

The CSS codes will exploit the concept of dual codes. Let C1 be a [n, k1]
classical linear code, i.e. which uses 2k1 so-called codewords of n bits which can
be generated by a n× k1 generator matrix G1. Let C2 be a [n, k2] subcode of C1,
with n× k2 generator matrix G2, such that k2 < k1 and such that C2 ⊂ C1. We
denote by H1 and H2 their respective parity check matrices. We will consider
that C1 and C⊥2 (the dual code of C2) can correct up to t errors. Note that as C2

is a subcode of C1, the rows of H1 are spanned by the rows of H2. The subcode C2

defines an equivalence relation over C1. We will consider two codewords x, y ∈ C1

to be equivalent whenever there exist some w ∈ C2 such that x = y ⊕ w, where
⊕ denotes the bitwise addition modulo 2. There are exactly |C1| / |C2| = 2k1−k2

equivalence classes. The set of all possible equivalences classes (or cosets) will

5 Definition taken from [24].



be denoted C1/C2.

We now define the class of CSS(C1,C2) quantum codes. Consider the state |x〉
where x ∈ C1/C2. The CSS codeword coding |x〉 is the quantum state

|x〉 → 1
√

|C2|
∑

w∈C2

|x⊕ w〉 . (3)

One can see that two states |x〉 and |y〉 such that x and y are in the same
equivalence class are coded by the same CSS codeword and thus, we just defined
a [n, k1− k2] quantum correcting code. We will now see that it is able to correct
up to t bit-flip errors and t phase-flip errors simultaneously.

Let e1 (resp. e2) be the n-bit vector with 1s where bit-flip (resp. phase-flip)
errors occurred and 0s elsewhere. We only consider the case where the Hamming
weights of e1 and e2 are less than t, i.e. less than t errors occurred in both cases.
The corrupted state can be represented by

1
√

|C2|
∑

w∈C2

(−1)(x⊕w)·e2 |x⊕ w ⊕ e1〉 , (4)

where · is the inner-dot product. We first try to correct bit-flip errors. We
add to our system n−k1 ancillary qubits and compute (using a reversible trans-
formation) the state

1
√

|C2|
∑

w∈C2

(−1)(x⊕w)·e2 |x⊕ w ⊕ e1〉 |H1(x⊕ w ⊕ e1)〉 . (5)

As x and w are two codewords of C1 (remember that C2 ⊂ C1),

H1(x⊕ w ⊕ e1) = H1e1 . (6)

The ancillary qubits are just in the state |H1e1〉 which is called the bit-flip
syndrome. As any two different error syndromes are orthogonal, it is possible
to measure the ancillary qubits in order to obtain the value H1e1. Since C1 is
able to correct up to t errors, this knowledge allows us to deduce where qubit
flips occurs and by mean of quantum circuit composed entirely of controlled-not

gates, it is possible to recover the state

1
√

|C2|
∑

w∈C2

(−1)(x⊕w)·e2 |x⊕ w〉 . (7)

Now that we got rid of the bit-flip errors we have to see how one can manage
to correct phase flip errors in a similar way. Recalling that Hadamard transform
acting on each qubit of an n-qubit state |x〉 is

H⊗n |x〉 = 1√
2n

2n

−1
∑

z=0

(−1)x·z |z〉 , (8)



applying the Hadamard transform on each qubit of the state (7) gives

1
√

2n |C2|
∑

w∈C2

2n

−1
∑

z=0

(−1)(x⊕w)·(e2⊕z) |z〉 . (9)

With z′ = e2 ⊕ z we obtain

1
√

2n |C2|

2n

−1
∑

z′=0

∑

w∈C2

(−1)(x⊕w)·z′ |z′ ⊕ e2〉 . (10)

We can notice that if z′ ∈ C⊥2 it is, by definition, orthogonal to every w ∈ C2

so that in that case
∑

w∈C2
(−1)w·z′ = |C2|. Conversely, if z′ /∈ C⊥2 , half of the w·z′

will be zero so that in that case
∑

w∈C2
(−1)w·z′ = 0. From this consideration we

can reduce (10) to

1
√

2n/ |C2|
∑

z′∈C⊥

2

(−1)x·z′ |z′ ⊕ e2〉 . (11)

Our phase-flip correction problem is now reduced to a bit-flip correction
which can be solved using the parity check matrix G2 of C⊥2 . Once the error e2

has been removed from (11), applying once again the Hadamard transform to
each qubit of the state gives back the original error free state (3).

The CSS code we have just seen is a [n, k1−k2] quantum error correcting code
that can correct up to t bit-flip and phase-flip error provided that the underlying
linear codes can correct up to t errors.

4 Quantum Key Exchange with CSS codes

We will now take into account the fact that a real channel will inevitably in-
troduce errors into the transmitted states, so that Alice and Bob could mix up
the naive action of noise with a detrimental action of Eve. The natural idea
would be to find a way for Alice and Bob to correct errors, and thus make use
of Quantum Error Correcting Codes. But, as we noticed at the end of Sect.
2, we have to make sure that the state going through the channel cannot be
differentiated from the maximally random density matrix 2−NI⊗N . To collect
information about the key bits, Eve would thus have to entangle her qubits with
the encoded state. If Alice and Bob state is protected against errors, i.e. against
the entanglement with an outside system, they will prevent Eve from acquiring
information about the key.

A solution is to use a set of shifted CSS codes. Alice chooses uniformly at
random some α ∈ Fn

2 /C⊥2 and β ∈ Fn
2 /C1 (using the notation introduced in Sect.

3) and encode a state |k〉 such that k ∈ C1/C2 using the parameterized state



|k〉 → 1
√

|C2|
∑

w∈C2

(−1)α·w |k ⊕ w ⊕ β〉 . (12)

We will denote such a codeword with parameters α and β by Qα,β . Alice is
thus going to encode the random chosen key |k〉 using the CSS code Qα,β which
she then sends to Bob (notice that the key is chosen among a set of 2k1−k2

possible keys). As the parameters α and β are chosen uniformly at random,
the density matrix ρ of the state available to Eve is the average of all possible
encoding of |k〉, i.e.

ρ =

∣

∣C⊥2
∣

∣

2n
|C1|
2n

∑

α∈Fn

2
/C⊥

2

β∈Fn

2
/C1

1

|C2|
∑

w1,w2∈C2

(−1)α·(w1⊕w2) |k ⊕ w1 ⊕ β〉 〈k ⊕ w2 ⊕ β| .

The same arguments we used in Sect. 3 to reduce (10) give

∑

α∈Fn

2
/C⊥

2

(−1)α·(w1⊕w2) =

{

2n

|C⊥

2 | if w1 = w2

0 otherwise.
(13)

From the last two equations, we deduce:

ρ =
|C1|

2n |C2|
∑

β∈Fn

2
/C1

∑

w∈C2

|k ⊕ w ⊕ β〉 〈k ⊕ w ⊕ β| . (14)

As Eve doesn’t have any a priori on k ∈ C1/C2 as it is chosen at random by
Alice, ρ finally is the average over all possible keys that is

ρ =
1

2n

∑

k∈C1/C2

∑

β∈Fn

2
/C1

∑

w∈C2

|k ⊕ w ⊕ β〉 〈k ⊕ w ⊕ β| (15)

=
1

2n
I⊗n . (16)

As wanted, the state available to Eve is indistinguishable from the maximally
random density matrix. The protocol then succeeds if Bob can recover the key.
Once he has received the codeword Qα,β he announces it to Alice who the re-
veals the parameters α and β. With this knowledge, Bob can reduce Qα,β to the
classical CSS code that encodes the key k. As k was encoded by a CSS code, up
to t errors can be corrected, so that the encoded state |k〉 is delivered to Bob
with high fidelity. Any external state (including any state in Eve possession) is
thus disentangled from Bob state. Therefore the key is secure.

We can note that this protocol works, provided that the error rate (includ-
ing errors caused by Eve) is low enough, so that CSS codes can perform their
function. A solution to detect a too high error rate would be the following. Just



before sending Qα,β on the quantum channel, Alice can interspersing it with
check bits at random positions. After Bob has received the state, she reveals the
positions and values of these check bits to him so that he can compute the error
rate. If it is too high, the whole state is discarded and they abort the protocol.
If it is low enough, Bob knows that the CSS codes will fulfill their mission, and
only the check bits are discarded. Note that as the check bit are random and at
random positions, the density matrix of the state available to Eve is still indis-
tinguishable from the maximally random density matrix.

The drawback of this secure protocol is that it is impractical. When Bob
receives the quantum state Qα,β he has to store it until Alice reveals the values
of α and β. To achieve this, Bob must have access to a quantum computer (or a
quantum memory) which is not feasible with actual technology. The advantage
of the BB84 protocol is that Bob can measure the state individually as soon as
they reach him, so that he does not need to have access to a quantum memory.
We shall see why the security of the QKE protocol using CSS codes implies the
security of the BB84 protocol over noisy channels in the next section.

5 Security Proof of BB84 over Noisy Channels

We describe the BB84 protocol over noisy channels [24] (which slightly differ
from the BB84 protocol we saw in Sect. 2) on Figure 1, using the notations of
Sect. 2.

1. Alice creates (4 + δ)n random bits.
2. Alice chooses a random (4 + δ)n-bit string b. For each bit, she creates a

state in the B0 basis (when the corresponding bit of b is 0) or in the B1

basis (when the corresponding bit of b is 1).
3. Alice sends the resulting qubits to Bob.
4. Bob receives the (4 + δ)n qubits, measuring each in B0 or B1 at random.
5. Alice announces b.
6. Bob discard any result where his basis doesn’t coincide with Alice’s one.

With high probability, there are at least 2n bits left (if not, abort the
protocol). Alice decides randomly on a set of 2n bits to use for the protocol,
and chooses at random n of these to be check bits.

7. Alice and Bob announce the values of their check bits. If too few of these
value agree (high error rate), they abort the protocol.

8. Alice announces u ⊕ v, where v is the string consisting of the remaining
non-check bits, and u is a random codeword in C1.

9. Bob subtracts u ⊕ v from his own remaining non-check bits v ⊕ ε (where
ε represents errors), and corrects the result u ⊕ ε in order to obtain u, a
codeword in C1.

10. Alice and Bob use the coset of u in C1/C2 as the secret key.

Fig. 1. BB84 protocol over noisy channels



Looking back at the QKE protocol with CSS codes, we can see that the
only things Bob cares about are the encoded bits of the key value. Consider the
case where Alice never sends the value of α. Can Bob still decode the states he
receives and deduce the key bits ? If Bob doesn’t receive the value of α, we can
consider that the density matrix describing the state he receives from Alice is
the average of Qα,β over all possible α, i.e.

ρBob =

∣

∣C⊥2
∣

∣

2n

∑

α∈Fn

2
/C⊥

2

1

|C2|
∑

w1,w2∈C2

(−1)α·(w1⊕w2) |k ⊕ w1 ⊕ β〉 〈k ⊕ w2 ⊕ β|

=
1

|C2|
∑

w∈C2

|k ⊕ w ⊕ β〉 〈k ⊕ w ⊕ β| , (17)

using (13). We see that all the information Bob cares about (namely the bits
k) is available in the density matrix ρBob so that Bob does not need the value
of α. The state ρBob can be equivalently seen as a mixture of states |k ⊕ w ⊕ β〉
where w ∈ C2 would have been chosen uniformly at random. We can thus con-
sider that Alice has sent the state |k ⊕ w ⊕ β〉 with w chosen randomly in C2.
After a measurement, Bob recovers the corrupted bits k⊕w⊕β⊕ε. Alice reveals
the value of β, which Bob subtracts from his string of bits in order to obtain
k ⊕ w ⊕ ε. Bob knows that k ⊕ w ∈ C1, so that he can correct (with high prob-
ability) the result in order to recover the value k ⊕ w. The equivalence class of
k ⊕ w corresponds to the secret key.

The reasoning of the last paragraph is just another way of looking a the
QKE protocol with CSS codes. But we shall see why this new point of view has
the advantage to prove the security of the BB84 protocol presented on Figure
1. In the BB84 protocol, after having discarded the check bits, Bob remains
with the bits v ⊕ ε. In the CSS protocol Alice would reveal β, in the BB84 pro-
tocol she reveals u ⊕ v, which is uniformly distributed over F n

2 (because v is
uniformly distributed over F n

2 ). Bob can deduce the value of u ⊕ ε (just as he
would have deduced the value of k ⊕w⊕ ε in the CSS protocol) and, as u ∈ C1,
he can recover u. Alice and Bob finally use the equivalence class of u as a key
(just as they would have used the equivalence class of k⊕w in the CSS protocol).

We conclude that the QKE with CSS codes and the BB84 protocol over noisy
channels are completely equivalent, so that they are both secure.

6 Conclusion

In this paper, we have gone through the proof of the security of the BB84 protocol
over noisy channels [24] proposed by P.W. Shor and J. Preskill. As they already
notice in the original paper, the proof has a few loose ends like for example the
fact that it does not meet completely the reality of experiment. In particular,
the proof does not take into account the existence of imperfect sources (although
this issue wasn’t taken into account in earlier proofs [4, 14] either).
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