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Abstract

Block ciphers probably figure in the list of the most important cryptographic
primitives. Although they are used for many different purposes, their essential goal is
to ensure confidentiality. This thesis is concerned by their quantitative security, that is,
by measurable attributes that reflect their ability to guarantee this confidentiality.

The first part of this thesis deals with well know results. Starting with Shan-
non’s Theory of Secrecy, we move to practical implications for block ciphers, recall the
main schemes on which nowadays block ciphers are based, and introduce the Luby-
Rackoff security model. We describe distinguishing attacks and key-recovery attacks
against block ciphers and show how to turn the firsts into the seconds. As an illustration,
we recall linear cryptanalysis which is a classical example of statistical cryptanalysis.

In the second part, we consider the (in)security of block ciphers against sta-
tistical cryptanalytic attacks and develop some tools to perform optimal attacks and
quantify their efficiency. We start with a simple setting in which the adversary has
to distinguish between two sources of randomness and show how an optimal strategy
can be derived in certain cases. We proceed with the practical situation where the
cardinality of the sample space is too large for the optimal strategy to be implemented
and show how this naturally leads to the concept of projection-based distinguishers,
which reduce the sample space by compressing the samples. Within this setting, we
re-consider the particular case of linear distinguishers and generalize them to sets of
arbitrary cardinality. We show how these distinguishers between random sources can
be turned into distinguishers between random oracles (or block ciphers) and how, in
this setting, one can generalize linear cryptanalysis to Abelian groups. As a proof of
concept, we show how to break the block cipher TOY100, introduce the block cipher
DEAN which encrypts blocks of decimal digits, and apply the theory to the SAFER
block cipher family.

In the last part of this thesis, we introduce two new constructions. We start
by recalling some essential notions about provable security for block ciphers and about
Serge Vaudenay’s Decorrelation Theory, and introduce new simple modules for which
we prove essential properties that we will later use in our designs. We then present
the block cipher C and prove that it is immune against a wide range of cryptanalytic
attacks. In particular, we compute the exact advantage of the best distinguisher limited
to two plaintext/ciphertext samples between C and the perfect cipher and use it to
compute the exact value of the maximum expected linear probability (resp. differential
probability) of C which is known to be inversely proportional to the number of samples
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Abstract

required by the best possible linear (resp. differential) attack. We then introduce KFC
a block cipher which builds upon the same foundations as C but for which we can prove
results for higher order adversaries. We conclude both discussions about C and KFC by
implementation considerations.

Keywords: Cryptography, block cipher, statistical cryptanalysis, linear cryptanalysis,
hypothesis testing, SAFER, Decorrelation Theory
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Résumé

Les algorithmes de chiffrement à clef secrète font très certainement partie des
primitives cryptographiques les plus importantes. Bien qu’ils soient utilisés à des fins
très diverses, leur principale fonction est d’assurer la confidentialité des données. Cette
thèse s’intéresse à leur sécurité quantitative, c’est-à-dire aux attributs mesurables qui
reflètent leur habilité à garantir cette confidentialité.

La première partie de cette thèse traite d’un certain nombre de résultats bien
connus. En partant de la théorie du secret de Shannon, nous considérons les implications
pratiques pour les algorithmes de chiffrement à clef secrète, nous rappelons les schémas
élémentaires sur lesquels ces derniers sont conçus, et introduisons le modèle de Luby
et Rackoff. Nous décrivons les attaques visant à distinguer une permutation aléatoire
d’une autre puis les attaques dont l’objectif est de retrouver la clef secrète pour enfin
montrer comment les premières peuvent entrâıner les deuxièmes. En guise d’exemple,
nous rappelons les concepts de la cryptanalyse linéaire qui est un exemple classique de
cryptanalyse statistique.

Dans la deuxième partie, nous considérons l’(in)sécurité des algorithmes de
chiffrement à clef secrète face au attaques cryptanalytiques statistiques et développons
quelques outils pour exécuter certaines attaques et quantifier leur efficacité. Nous con-
sidérons un cadre initial très simple dans lequel un adversaire doit distinguer une source
aléatoire d’une autre et montrons que, dans certains cas, une stratégie optimale peut
être trouvée. Nous traitons ensuite le cas pratique dans lequel la cardinalité de l’espace
échantillon est trop grande pour que la stratégie optimale puisse être utilisée telle quelle,
ce qui entrâıne naturellement la définition de distingueurs basés sur des projections qui
réduisent l’espace en compressant chaque échantillon. Dans cette optique, nous recon-
sidérons le cas des distingueurs linéaires et les généralisons aux ensembles de cardinalité
arbitraire. Nous montrons comment ces distingueurs entre des sources aléatoires peu-
vent être transformés en distingueurs entre des oracles aléatoires et comment, de cette
façon, il est possible de généraliser la cryptanalyse linéaire aux groupes Abéliens. En
guise de preuve de concept, nous montrons comment casser l’algorithme de chiffrement
TOY100, introduisons l’algorithme DEAN qui permet de chiffrer des blocs de chiffres
décimaux, et appliquons la théorie à la famille d’algorithmes SAFER.

Dans la dernière partie de cette thèse, nous proposons deux nouvelles con-
structions. Nous commençons par rappeler quelques notions essentielles concernant
la sécurité prouvée des algorithmes de chiffrement à clef secrète et la Théorie de la
Décorrélation développée par Serge Vaudenay. Nous introduisons de nouveaux modules
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Résumé

pour lesquels un certain nombre de résultats de sécurité peuvent être prouvés et qui
seront au coeur des deux constructions à suivre. Nous présentons ensuite l’algorithme
de chiffrement C et prouvons sa sécurité contre une certain nombre d’attaques. En par-
ticulier, nous calculons l’avantage exact du meilleur distingueur limité à deux paires de
textes clairs/chiffrés entre C et l’algorithme de chiffrement parfait et utilisons ce résultat
pour calculer la valeur exacte de la valeur moyenne maximum de la probabilité linéaire
(ainsi que celle de la valeur moyenne de la probabilité différentielle) de C que l’on sait
être inversement proportionnelle au nombre d’échantillons nécessaires pour mener une
attaque concluante. Nous introduisons ensuite KFC, un algorithme qui repose sur les
mêmes bases que C mais pour lequel nous arrivons à prouver des résultats concernant
des adversaires d’ordres plus élevés. Dans les deux cas, nous concluons la discussion
par des considérations expérimentales.

Mots-clefs: Cryptographie, algorithme de chiffrement à clef secrète, cryptanalyse statis-
tique, cryptanalyse linéaire, test d’hypothèse, SAFER, Théorie de la Décorrélation
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Jacques Stern pour avoir non seulement accepté mon invitation mais aussi pour son aide
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pendant deux ans ! Ceux qui le connaissent ne me contrediront pas, sa gentillesse et à
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beaucoup de conférences et de voyages à l’autre bout du monde pour y assister. Merci à
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en particulier à Frédéric Muller, Claude Barral, Thomas Peyrin, Raphael Overbeck,

– xi –



Remerciements

Khaled Ouafi, Rafik Chaabouni, Antoine Joux, Willi Meier, David Naccache, Pas-
cal Paillier, Phong Q. Nguyen, Julien Stern, Olivier Billet, Emmanuel Bresson, David
Pointcheval, Jean-Philippe Aumasson, Kaisa Nyberg, et Raphael Phan.

Merci à Chrissie et John Barlow pour leur amitié. Merci en particulier à John
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Part I

An Introduction to Modern Cryptology
and an Approach to the Design and

Cryptanalysis of Block Ciphers





Chapter 1

Shannon’s Theory of Secrecy

The oldest concern of cryptography is probably to find the most efficient and
elegant technique to transmit confidential information (through time or space) to a
recipient, and to this recipient only. The first known reference to this problem dates
back to quite ancient times, a fact that David Kahn illustrates from the very beginning
of “The Code-Breakers” [78] by entitling the second chapter “The first 3,000 years”.
During this period of time, cryptography fascinated not only the most important world
leaders (Julius Caesar’s cipher is one of the first encryption method taught in almost
every lecture on cryptography) but also the greatest artists and scientists. It is not
surprising that several books relate its story [78,100,141,142] for a reason which is very
clearly and concisely summarized in a (by now) famous leitmotiv propagated in the 90’s
by a young cryptographer [149] of the “Ecole Normale Supérieure”:

“La crypto c’est rigolo”.1

Yet, the bases of cryptography as a scientific discipline were only formulated
in 1946 by Claude E. Shannon in the confidential report (by now declassified) “A Math-
ematical Theory of Cryptography” [139]. Its mathematical analysis provides a formal
statement of what defines a cryptographic system and what one should require from it.

Shannon’s theory of secrecy is concerned with encryption methods which allow
one to conceal information originally contained in a message (or plaintext) in a so-called
ciphertext. Ideally, the ciphertext alone should not allow the recovery of information,
so the fact that it is eavesdropped by some adversary cannot do any harm2.

1.1 The Encryption Model: Preserving Confidentiality

Shannon defines a secrecy system (or a cryptographic system) as “a set of
transformations of one space (the set of possible messages) into a second space (the set

1Crypto is fun.
2Shannon makes reference to the “enemy” since at that time, cryptography was essentially of military

concern.
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Chapter 1 Shannon’s Theory of Secrecy

Message Source
T
−1

K

DeciphererEncipherer

TK

Key Source

Message M Cryptogram C

Key K

Message M

Enemy Cryptanalyst

Figure 1.1: Symmetric Encryption

of possible cryptograms).” [139]. Each of the transformations is indexed by a key which
shall only be shared by the sender and the recipient of the message. This situation is
illustrated in Figure 1.1. Using the key K and the Encipherer T, the sender encrypts
the message M and obtains the cryptogram (or ciphertext)

C = TK(M)

which is send over an insecure channel to the recipient, who recovers the original message
M using the decipherer T−1 as

M = T−1
K (C).

According to this scenario, all the transformations defined by the system should be
invertible in order to allow the recipient to recover only the original plaintext from the
ciphertext. The channel on which the ciphertext is sent is assumed to be insecure in the
sense that the enemy cryptanalyst (or adversary) can eavesdrop any message on that
channel.

The key K is sampled by the key source in the finite space of all the possible
keys allowed by the system. The key is usually considered as a random variable following
some a priori distribution (which is known by the adversary). In most cases, this
distribution is assumed to be uniform. Similarly, the message M is sampled by the
message source according to some a priori distribution which is generally non-uniform.
Once the adversary has intercepted the ciphertext C, the new distributions of M and
K are referred to as the a posteriori distributions, since the adversary can benefit from
any information that can be extracted from C. Intuitively, the level of security achieved
by the system depends on how far the a posteriori distributions are from the a priori
distributions.

In this scenario, the secret key must be transmitted to both parties over a
secure (i.e., confidential) channel, which is obviously more “expensive” to use than
the insecure one. This clearly makes sense when the encryption method is such that
the message space from which M is chosen is larger than the key space. For example,
modern encryption procedures (as block ciphers or stream ciphers) allow the encryption
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Section 1.3 Perfect Secrecy and the Vernam Cipher

of several gigabytes of data with only one 128-bit key. But this model can also be
meaningful when the message and the key are equal in length (which is mandatory
when one aims at unconditional security, as we will see). In that case, one can anticipate
any potential difficulty in transmitting confidential information at a certain time t by
transmitting the key at a time t′ < t when such a transmission is easier.

Finally, this model assumes that the adversary knows the set from which the
transformations TK and T−1

K are chosen from. In other words, the adversary knows
the specifications of the cryptosystem that is used. Besides being conservative (which
is often desirable from the point of view of security), this assumption has been proved
correct in several situations and in particular when a large period of time is left to the
adversary to break the system. This assumption corresponds to one of the most famous
Kerckhoffs’ principles [83], according to which the security of a cryptosystem should
not rely on the secrecy of the cryptosystem itself (which is not to say that one should
necessarily make it public in practice).

1.2 Perfect Secrecy and the Vernam Cipher

Ideally, no information about the plaintext should leak from the ciphertext C.
In other words, the a posteriori distribution of the message should be identical to its
a priori distribution so that an adversary with unlimited computational power cannot
recover M (nor K) from C. We thus consider that the encryption system achieves
perfect secrecy when

Pr[M = m|C = c] = Pr[M = m]

for any acceptable ciphertext c and message m, which also reads as

H(M |C) = H(M),

where H(·) denotes Shannon’s entropy [139,157].
The Vernam cipher [160] is a stream cipher developed by Gilbert Sandford

Vernam in 1926 which achieves perfect secrecy when the a priori distribution of the
key is uniform [139] and when its length (at least) corresponds to that of the plaintext.
Assuming that the plaintext and the key are represented as bit strings and that they
are of equal length, the Vernam cipher simply computes the ciphertext as

C = M ⊕K

where ⊕ corresponds the bit-wise exclusive-or operation. For several reasons, the Ver-
nam cipher is impractical: not only a secret key cannot be used twice, but it has to
be uniformly distributed, which is hard to achieve in practice. Yet, the problem of the
secret key length is not inherent to the Vernam cipher but to the nature of perfect
secrecy, as the following theorem shows.

Theorem 1.1 (Shannon, 1949) Perfect secrecy implies H(K) ≥ H(X).
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Chapter 1 Shannon’s Theory of Secrecy

1.3 Going Beyond Perfect Secrecy

Obviously, perfect secrecy is too expensive in many practical situations since
the quantity of data to be sent over the insecure channel is necessarily (at least) equal
to that of the data to be secured. Modern encryption methods are thus more concerned
with practical security instead.

Essentially, a cryptographic system is considered to be practically secure when
no computationally bounded adversary can recover meaningful information about M or
K from the sole knowledge of the ciphertext C. Most of the currently widely used block
ciphers (such as the Advanced Encryption Standard [41]) are assumed to be practically
secure (although in almost all cases, no strong mathematical proof of this is provided).

Moreover, even in the case where perfect secrecy is not required, both ends
still need to share the same secret key, which shall thus be transmitted to both end in a
confidential way. This problem was solved with the invention of public key cryptography,
as we will see in Chapter 2.

1.4 Thesis Outline

In the rest of Part I, we will recall several notions concerning Encipherers,
which we rather call symmetric encryption algorithms. In particular we explain in
Chapter 2 how to determine the secret key length by computing the complexity of
black box attacks (i.e., generic attacks that apply to any block cipher) and show how
the problem of sharing this secret key is solved by means of public key cryptography.
Almost all practical block cipher constructions follow either a Feistel scheme [50] (or a
generalization of it), a Lai-Massey scheme [96], or a substitution-permutation network
(SPN). We recall these three schemes in Chapter 3 following a top-down approach,
detailing various of the smallest building blocks used within these schemes together
with some of the essential properties they should have. We recall in Chapter 4 the
Luby-Rackoff security model [102]. We introduce the notion of perfect cipher together
with statistical attacks against block ciphers. In particular, we explain the difference
between distinguishing attacks and key-recovery attacks (and see how to turn the first
ones into the seconds), and recall linear cryptanalysis [110] which is a classical example
of statistical cryptanalysis. The notations used throughout the rest of this thesis are
introduced in Chapter 5 as well as some elementary mathematical results.

In Part II we consider the (in)security of block ciphers against statistical crypt-
analytic attacks and develop some tools to perform optimal attacks and quantify their
efficiency. We do this step-by-step, starting by assuming in Chapter 6 a simple setting
in which the adversary has to distinguish between two sources of randomness in a set
of reasonable cardinality. Through the method of types, we show how to derive the
optimal distinguisher limited to q samples and compute its advantage, which we proved
to be linked to the Chernoff information between the two probability distributions. Our
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Section 1.4 Thesis Outline

treatment is not only valid when both distributions are of full support3 but also when
their respective supports differ. Then we consider the case where both distributions
are “close” to each other, which is a situation of practical interest in cryptography.
We then turn to a more complex problem (from the point of view of the adversary)
where one of the two hypotheses is composite. Finally, we study the case where the
adversary has to decide whether or not the samples follow some known distribution,
and we derive her advantage in this case also. In Chapter 7 we consider the case where
the cardinality of the samples’ set is too large to implement the optimal distinguisher.
We introduce projection-based distinguishers which typically compress the samples be-
fore using them to decide between one hypothesis or another. Within this setting, we
re-consider the particular case of linear distinguishers and generalize them to sets of
arbitrary cardinality. We show how these distinguishers between random sources can be
turned into distinguishers between random oracles (or block ciphers) in Chapter 8 and
how, in this setting, one can generalize linear cryptanalysis to Abelian groups. Using
these theoretical tools, we show how to break TOY100 and introduce the block cipher
DEAN which encrypts blocks of decimal digits. We apply the theory to the SAFER
block cipher family in Chapter 9. Most of the theoretical tools introduced in this part
are published in [7, 10], except for the generalization of linear cryptanalysis which is
published in [8], along with the attacks on SAFER.

We introduce two new block cipher designs in Part III. We start by recalling
some essential notions about provable security for block ciphers and about Serge Vau-
denay’s Decorrelation Theory [155] in Chapter 10. Our contribution essentially relies
on introducing new simple modules for which we prove essential properties that we will
later use in our designs. In Chapter 11 we introduce C, a block cipher provably secure
against a wide range of cryptanalytic attacks, including linear and differential crypt-
analysis (taking into account the linear hull effect [125] and the differentials effects,
which is unfortunately almost never done in so-called traditional block cipher security
proofs). In particular, we compute the exact advantage of the best distinguisher lim-
ited to two plaintext/ciphertext samples between C and the perfect cipher and use it to
compute the exact value of the maximum expected linear probability (resp. differential
probability) of C which is known to be inversely proportional to the number of samples
required by best possible linear (resp. differential) attack. We conclude the chapter by
implementation considerations. Since we are unable to prove any security result on C

concerning the best q-limited distinguisher for q > 3, we introduce the block cipher KFC
in Chapter 12, for which we indeed manage to prove security results for higher order
adversaries. The block cipher C is published in [6], based on previous security results
we obtained in [9]. The development of KFC is published in [5].

3The support of a finite distribution is the set of points on which the probability is non-zero. A
distribution is of full support when its support corresponds to the whole sample space.
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Chapter 2

Computationally Bounded Adversaries

In this chapter we show how two address two questions raised by Shannon’s
encryption model, namely

• what should be the typical key length (in bits for example) of a secure block
cipher,

• how one can transmit the secret key to both parties.

A block cipher on a finite set is a family of permutations on that set, indexed
by a parameter called the key. More formally, let T and K be two finite sets, respectively
called the text space and the key space. A block cipher C on the text space T and key
space K is a set of |K| permutations on T , i.e.,

C = {Ck : T → T : k ∈ K}.
To obtain a secure block cipher, it seems natural to require at least that the cardinality
of K is large enough, for a reason that we will formalize here.

2.1 Black Box Attacks: Determining the Secret Key Length

Exhaustive Key Search

We first assume that the block cipher has no equivalent key, i.e., that Ck 6= Ck′

when k 6= k′ (otherwise, it suffices to keep in K exactly one representative of each
equivalence class). We consider the scenario where the adversary is given a plain-
text/ciphertext pair (P, C), such that C = Cek(P ) for some secret key k̃ ∈ K. The
objective of the adversary is to recover k̃. Probably the most basic strategy is to ex-
haust all possible keys k and check whether C = Ck(P ). If this is not the case, then
k is certainly not the key k̃. If the equality holds, then the algorithm outputs k and
stops. This is illustrated in Algorithm 2.1. Assuming that k̃ = kσ(j) for some j and the
permutation σ drawn on line 1, then it is clear that the algorithm succeeds if

C 6= Ckσ(i)
(P )
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Chapter 2 Computationally Bounded Adversaries

Input: A plaintext/ciphertext pair (P, C) ∈ T 2 such that C = Cek(P ) for some
secret key k̃ ∈ K = {k1, k2, . . . , k|K|}

Output: A key k
Select σ uniformly at random among all permutations of {1, 2, . . . , |K|}1:

for i = 1, 2, . . . , |K| do2:

if C = Ckσ(i)
(P ) then return kσ(i)3:

end4:

Algorithm 2.1: Exhaustive search for the secret key k̃ ∈ K.

for all i = 1, 2, . . . , j−1. We denote by p the probability of success. Since σ is uniformly
distributed, we have

p =
1
N

where N denotes the number of keys k in K such that C = Ck(P ). We can approximate
N by assuming that the |K| permutations defined by the block cipher are initially
chosen (at the time of designing C) at random and in a uniform way so that, denoting
C? : T → T a uniformly distributed random permutation we have

N = max(1, |K|Pr[C?(P ) = C]) = max(1, |K| / |T |). (2.1)

Since in practice |K| and |T | are close to each other, a few pairs are sufficient to obtain
an overwhelming probability of success.

Assuming that the algorithm succeeds using only one pair, the time complexity
is clearly equal to the position of k̃ in the list {kσ(1), kσ(2), . . . , kσ(|K|)}. In the worst case,
the complexity is |K| encryptions while on average it is (|K|+ 1)/2 since σ is uniformly
distributed. In both cases this does not depend on the distribution of k̃ (thanks to the
random selection of σ). The memory complexity of Algorithm 2.1 is clearly negligible.

Codebook Attack

The exhaustive key search algorithm requires no memory but has a tremendous
time complexity. One can rather imagine storing all possible (Ck(P ), k) pairs in a huge
table (for all possible k and one chosen P , sorted according to the first entry), request
the encryption of P under the secret key k̃, and perform one table look-up in order to
recover k. The time complexity is now negligible (except for the table pre-computation
time) and the memory requirement is in O(|K|).

Time-Memory Trade-offs

Martin Hellman showed in [66] how to obtain a trade-off between time and
memory complexities (a concept that was further refined by in [127]). Essentially, the
method allows the reduction of both time and memory complexities to |K|2/3.
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Figure 2.1: Secret key exchange by means of an authenticated channel

Conclusion

What the black box methods show is that K should be large enough in order
for the time needed to encrypt |K| plaintext to be overwhelming. As a consequence,
most of the current block ciphers use 128-bit or 256-bit keys whereas older ciphers used
to have 64-bit (or even 56-bit) keys.

2.2 New Directions in Cryptography: reducing Confidential-

ity to Authenticity

In their seminal article “New Directions in Cryptography” [47], Diffie and Hell-
man explain how to build a confidential channel from an authentic channel. The way
their construction integrates in Shannon’s model of secrecy is illustrated in Figure 2.1.
To simplify the description, we assume that the we are in the situation where Alice
needs to send some confidential information to Bob. Let G be finite cyclic group and
let g ∈ G be a (public) generator of this group. Alice and Bob respectively choose X and
Y uniformly at random in G, send gX and gY to each other through the insecure (but
authenticated) channel and both compute K = gXY . Without entering into the details
(for which we refer to [47, 157]), the Diffie-Hellman key agreement protocol is assumed
to be secure whenever the channels on which g, gX , and gY are sent are authenticated
and as soon as it is computationally hard to solve the Diffie-Hellman Problem (DHP)
in G, that is, given two inputs U, V ∈ G, compute K = gXY where X = logg U and
Y = logg V . In particular, this problem is assumed to be hard in Z?

p, where p is a large
prime number. We note that in practice, the secret key K will not be equal to gXY
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Chapter 2 Computationally Bounded Adversaries

but rather to h(gXY ) where h : G→ {0, 1}n is a hash function and n is the secret key
length.

Since Diffie and Hellman, various other means of exchanging a common secret
key by means of an authenticated channel were invented. In particular, any public
key cryptosystem (such as RSA [132], ElGamal [49], Paillier cryptosystem [128], the
Naccache-Stern cryptosystem [117] or Cramer-Shoup [38], to cite only a few) can be
used.
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Chapter 3

Block Ciphers Design: a Top-Down Approach

In this chapter we introduce typical block cipher designs. We first consider
iterated block ciphers, which encompass almost all block ciphers widely used today, key
schedules, and then consider three particular cases of iterated block ciphers, namely
Feistel ciphers, ciphers based on the Lai-Massey scheme, and substitution-permutation
networks.

It will then become evident that, whatever the kind of scheme, the building
blocks used within it must have certain desirable properties. Finally, we detail the
design of the Advanced Encryption Standard (AES) since the block cipher C that we
introduce in Chapter 11 is based on it.

3.1 Iterated Block Ciphers and Key Schedules

Let T and K respectively be the text space and the key space of a block cipher

C = {Ck : T → T : k ∈ K}.
Let r > 0 be a positive integer and let K1,K2, . . .Kr be r finite sets. C is said to be an
r-round iterated block cipher when it can be written as

Ck = R
(r)
kr
◦ R

(r−1)
kr−1

◦ · · · ◦ R
(1)
k1

, (3.1)

for all k ∈ K, where
R(i) = {R(i)

ki
: T → T : ki ∈ Ki}

is called the ith round of C. Of course, this definition is not completely sound since,
according on it, there is not a clear unique way of expressing an iterated cipher. Usually,
the ith round of a block cipher is successively made of

• a key-mixing phase, where the key ki is mixed to the data being encrypted,

• a confusion phase (in the sense of [139]),

• and a diffusion phase which dissipates the eventual redundancy.
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f1

f2

fr

⊕

⊕

⊕

Figure 3.1: An r-round Feistel scheme Ψ(f1, f2, . . . , fr)

The last round often restricts to the key-mixing phase. Finally, k1, k2, . . . , kr are called
the round keys of the block cipher and are derived from the main secret key k by means
of a deterministic algorithm called the key schedule. We will see that in most cases, the
length of each round key is comparable to that of the main secret key, so that when this
secret key is considered as a random variable K, the round keys K1,K2, . . . ,Kr cannot
be independent.

3.2 Round Functions Based on Feistel Schemes

A Feistel scheme is a structure which allows to construct a permutation on
2n-bit strings based on functions of n-bit strings. An r > 0 rounds Feistel scheme
based on the functions

f1, f2, . . . , fr : {0, 1}n → {0, 1}n,

is denoted Ψ(f1, f2, . . . , fr) and is represented in Figure 3.1. It is easy to see that
Ψ(f1, f2, . . . , fr) is invertible since

Ψ−1(f1, f2, . . . , fr) = Ψ(fr, fr−1, . . . , f1).
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Section 3.4 Round Functions Based on Lai-Massey Schemes

To construct an r-round iterated block cipher C : {0, 1}2n → {0, 1}2n (as in (3.1)) based
on an r-round Feistel scheme, one typically defines a family of functions

f =
{
fk : {0, 1}n → {0, 1}n : k ∈ K′}

and then let for all k ∈ K′

R(i)(xleft‖xright) = (xright‖xleft ⊕ fki(xright)),

where xleft (resp. xright) denotes the left-most (resp. right-most) n bits of the input x
of the round. Usually, the last round does not permute the outputs (as in Figure 3.1).
In this way, the construction of a family of permutations on 2n bits reduces to that of a
family of functions on n bits. Moreover, Luby and Rackoff showed in [102] that from a
secure family of functions, one only needs three rounds to obtain a secure block cipher
(this is more formally stated in Chapter 10).

Practical examples of block ciphers based on a Feistel scheme include the Data
Encryption Standard (DES) [122] and Blowfish [134]. The block cipher KFC that we
introduce in Chapter 12 is based on a three rounds Feistel scheme.

3.3 Round Functions Based on Lai-Massey Schemes

Like the Feistel scheme, the Lai-Massey scheme enables us to construct a per-
mutation from functions. An r rounds Lai-Massey scheme is represented in Figure 3.2.
This scheme was developed by Xuejia Lai and James Massey during the design of the
block cipher IDEA [94]. The particularity of the scheme is that it requires a commu-
tative and associative law (which can be the exclusive-or operation or more complex
group laws like in IDEA). As is, the Lai-Massey scheme is not secure even if the round
functions are. The reason being that whatever the number of rounds, it is always true
that

xleft ¯ xright = yleft ¯ yright,

where x = xleft‖xright and y = yleft‖yright respectively denote the input and the
output of the scheme. To break this undesirable property, Vaudenay demonstrates
in [153] that introducing a special (fixed) permutation σ at the output of each round
left branch allows one to obtain security results equivalent to those of the Feistel scheme.
The permutation σ must be such that z 7→ σ(z)−z is also a permutation, in which case
σ is called an orthomorphism.

Practical examples of block ciphers based on a Lai-Massey scheme include
IDEA [94] and FOX [76].

3.4 Round Functions Based on Substitution-Permutation

Networks

The last typical skeleton is probably the one which is closest to Shannon’s
conception of encryption [139] since it consists of a sequence wherein a substitution
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Figure 3.2: An r-round Lai-Massey scheme

layer producing confusion is followed by a confusion layer producing diffusion. Although
any block cipher can be seen as a substitution-permutation network, those based on the
Feistel or the Lai-Massey schemes are usually not considered to be part of this category.

The family of block ciphers SAFER [107,109] (which we cryptanalyse in Chap-
ter 9) and the Advanced Encryption Standard [41] (which we introduce in Section 3.7
and on which we base the design of the block cipher C in Chapter 11) are well known
examples of substitution-permutation networks.

3.5 Providing Diffusion: on the Need for Multipermutations

According to Shannon, the diffusion process should “dissipate [the redundancy]
into long range statistics” [139]. Yet, this definition leaves quite some space for inter-
pretation. Schnorr and Vaudenay formalize in [137] the concept of multipermutation
explaining what it technically means to provide good diffusion. Vaudenay further il-
lustrates in [150] how fundamental this concept can be. In particular, he shows that if
one replaces the substitution boxes of SAFER by other boxes then one obtains a weak
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block cipher in more than 6% of cases, the reason being that the diffusion of SAFER
is not a multipermutation. This is also a feature we exploit in the generalized linear
cryptanalysis that we propose in Chapter 9.

Definition 3.1 A (r, n)-multipermutation over an alphabet Z is a function f from Zr

to Zn such that two different (r + n)-tuples of the form (x, f(x)) cannot collide in any
r positions.

Vaudenay notes that in the case where f is linear, Definition 3.1 corresponds to
MDS codes. For example, one of the core transformations of the AES diffusion is based
on a linear multipermutation (i.e., on an MDS code). In Chapter 11 we take advantage
of the inherent properties of MDS codes to prove certain security results concerning the
block cipher C.

3.6 Providing Confusion: Mixing key bits

Providing confusion is usually done by applying a (fixed) substitution box to
a mixing of key bits and of text bits. This is the case for the DES, the AES and SAFER.
Probably the most well known counter-example is IDEA. Sometimes the confusion is
created by key-dependent substitution boxes, which is the case for Blowfish [134] for
example, where the key bits have the particularity to be mixed with text bits in an
non-linear way. It seems natural to look for substitution boxes as similar as possible
to uniformly distributed random permutations (or functions, depending on the case),
as indicated by several security results that we manage to prove for both C and KFC
thanks to the ideal nature of the boxes we choose.

3.7 The Advanced Encryption Standard

As an example of substitution-permutation network, we introduce the encryp-
tion part of the Advanced Encryption Standard [41]. The AES is a 128-bit block cipher
made of r = 10 rounds in the case where 128-bit keys are used1, all identical in their
structure (except the last one). Each round is parameterized by a round-key which
is derived from the main 128 bits secret key using a so-called key schedule algorithm.
The structure of each round is made of a (non-linear) substitution layer followed by a
(linear) permutation layer.

A 128-bit plaintext p is considered as a 4×4 array of 8-bit elements (pi,j)1≤i,j≤4

with
p = p1,1‖p2,1‖p3,1‖p4,1‖p1,2‖ · · · ‖p4,4.

The first r − 1 first rounds successively apply to p the following transformations:

1The AES can also be used with 192 and 256-bit keys, in which cases the number of rounds are 12
and 14 respectively.
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• AddRoundKey performs an exclusive-or operation between the bits of p and the
bits of the round key k:



a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4


 =




p1,1 p1,2 p1,3 p1,4

p2,1 p2,2 p2,3 p2,4

p3,1 p3,2 p3,3 p3,4

p4,1 p4,2 p4,3 p4,4




⊕



k1,1 k1,2 k1,3 k1,4

k2,1 k2,2 k2,3 k2,4

k3,1 k3,2 k3,3 k3,4

k4,1 k4,2 k4,3 k4,4




• SubBytes applies to each 8-bit ai,j a fixed substitution box S[·]:



b1,1 b1,2 b1,3 b1,4

b2,1 b2,2 b2,3 b2,4

b3,1 b3,2 b3,3 b3,4

b4,1 b4,2 b4,3 b4,4


 =




S[a1,1] S[a1,2] S[a1,3] S[a1,4]
S[a2,1] S[a2,2] S[a2,3] S[a2,4]
S[a3,1] S[a3,2] S[a3,3] S[a3,4]
S[a4,1] S[a4,2] S[a4,3] S[a4,4]




• ShiftRows shifts each row of the 4 × 4 array by an offset which depends on the
row number:




c1,1 c1,2 c1,3 c1,4

c2,1 c2,2 c2,3 c2,4

c3,1 c3,2 c3,3 c3,4

c4,1 c4,2 c4,3 c4,4


 =




b1,1 b1,2 b1,3 b1,4

b2,2 b2,3 b2,4 b2,1

b3,3 b3,4 b3,1 b3,2

b4,4 b4,1 b4,2 b4,3




• MixColumns applies a linear multipermutation to each column of (ci,j)1≤i,j≤4.
Each 8-bit element is considered as a member of the finite field with 256 elements
GF(28). The elements of this finite field are represented by polynomials of degree
less than 8 with coefficients in GF(2), standard operations are performed modulo
the irreducible polynomial x8+x4+x3+x+1, and any 8-bit element b = b7b6 . . . b0

corresponds to the polynomial b7x
7 + b6x

6 + · · · + b0. With these notations, the
MixColumns operation on the jth column of (ci,j)i,j is:




d1,j

d2,j

d3,j

d4,j


 =




0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02


×




c1,j

c2,j

c3,j

c4,j




The last round of AES is identical to the r − 1 previous ones, except that there no
MixColumns operation. Finally, a last AddRoundKey completes the algorithm.
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Chapter 4

The Luby-Rackoff Model:

Statistical Attacks against Block Ciphers

In Chapter 2 we considered computationally bounded adversaries and used
them to determine the length of the secret key of a typical block cipher. We also
showed that public-key cryptography can be used to turn an authentic channel into an
(expensive) confidential channel that can be used to exchange this secret key.

Conversely, an adversary in the Luby-Rackoff Model is assumed to be compu-
tationally unbounded1 and only limited by the number of plaintext and/or ciphertext
samples she has access to.

4.1 The Perfect Cipher and Security Models

Let T and K respectively be the text space and the key space of a block cipher

C = {Ck : T → T : k ∈ K}.

The block cipher C can be considered as a random permutation by simply considering
the key K ∈ K is a random variable. Intuitively the perfect cipher should have no
particular property common to each permutation that it defines. As a consequence, the
perfect cipher

C? : T → T
is defined as a uniformly distributed random permutation on T . Obviously, the perfect
cipher cannot be implemented for realistic block sizes, since the key length is propor-
tional to log(|T |!). When studying the security of a block cipher C in the Luby-Rackoff
model, one is essentially concerned with how easy it is to distinguish C from C?.

More formally, we consider an algorithm, called a distinguisher and denoted
by A, that queries an oracle O which implements either a random instance of the
block cipher C (an hypothesis that we denote H1 : O = C) or a random instance of
the perfect cipher (an hypothesis that we denote H0 : O = C?). The distinguisher

1So that we can assume without loss of generality that it is deterministic, see [157].
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eventually outputs a bit to indicate which hypothesis between H0 and H1 is more likely
to be correct. The ability to distinguish between these two hypotheses is defined as the
advantage of the distinguisher and is defined by

AdvA(H0, H1) = |PrH1 [A = 1]− PrH0 [A = 1]| ,

which we also denote by AdvA(C, C?). The distinguisher is essentially limited by the
number q of queries it can make to the oracle, so that A is usually referred to as a
q-limited distinguisher. Furthermore, a distinguisher that can actually choose the ith
query made to the oracle based on the answers of the i− 1 previous ones is said to be
adaptive. A distinguisher which asks the q queries at once is said to be non-adaptive.
Obviously, adaptive distinguishers are more powerful than non-adaptive distinguishers.
We say that the block cipher C is resistant to q-limited (non-)adaptive distinguishers if
any q-limited (non-)adaptive distinguisher A has a negligible advantage.

This security model is the one used by Michael Luby and Charles Rackoff
in [102] to study the security of the Feistel scheme (on which the DES is based). This
is also the model in which we prove security results for the block ciphers C and KFC
that we introduce in chapters 11 and 12 respectively.

4.2 From Distinguishing to Key Recovery

Most of the concrete statistical cryptanalytic attacks against block ciphers
implicitly assume the Luby-Rackoff model. Moreover, most of the well known attack
categories (if not all) are non-adaptive. Within these, cryptanalysts generally distin-
guish between known-plaintext attacks (KPA), in which the adversary has no control
on which queries are made to the oracle, and chosen-plaintext attacks (CPA), in which
the queries follow a certain distribution chosen by the adversary. For example, linear
cryptanalysis [110,147] is a known-plaintext attack and differential cryptanalysis [21] is
a chosen-plaintext attack.

The objective of a cryptanalytic attack can either be to distinguish between
the two hypothesis mentioned in the previous section, namely H0 : O = C? and H1 :
O = C, or to recover the key that is used to encrypt the plaintext/ciphertext pairs that
are available. In the rest of this section, we introduce a formalism close to Wagner’s
unified view of block cipher cryptanalysis [163], which is based on Vaudenay’s model
of statistical cryptanalysis [151]. We apply it within the scope of iterated ciphers and
show why distinguishing attacks often lead to key recovery attacks.

Cryptanalytic attacks can be formalized using the notion of projection and
commutative diagrams. Consider an adversary performing a known plaintext attack
against r + 1 rounds of an iterated block cipher

C = {Ck : T → T : k ∈ K}.

To emphasize the fact that C is made of r + 1 rounds, we denote it C(r+1) and denote
the ith round by R(i). Recursively, we let C(r+1) = R(r+1) ◦C(r) and denote by ki the ith
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T ρ //

C(r)

²²

X

g

²²
T φ // Y

Figure 4.1: A commutative diagram representing a distinguishing property on Cr

round key (computed from the main key k by means of the key schedule). To simplify
the notations, we assume that all the rounds have the same structure, so that we simply
denote any round by R.

In an ideal scenario, the adversary is able to find a distinguishing property
for the r first rounds of the cipher. More formally, we assume that the adversary has
discovered two projections

ρ : T → X and φ : T → Y

(where X and Y typically are sets of small cardinality) and some function g : X → Y
such that

g ◦ ρ = φ ◦ C
(r)
k (4.1)

holds for all keys k ∈ K. Assume also that this property is not trivial, i.e., not true
in general if we replace Ck by C?. This can be represented by means of a commutative
diagram as shown on Figure 4.1, in which the facts that (4.1) holds and that the diagram
commutes are equivalent. In such a case, the adversary can often mount a key recovery
attack against r+1 rounds of the block cipher by first guessing the last round key kr+1,
decrypting one round of the cipher for all the ciphertexts made available to her using
her guess k̃ of kr+1, and finally checking whether

g ◦ ρ = φ ◦ C
(r+1)
k ◦ R−1

ek (4.2)

holds. When her guess is correct, i.e., when k̃ = kr+1, then (4.2) is equivalent to (4.1),
so that it will always hold. When k̃ 6= kr+1 then we can consider that the adver-
sary is actually performing an additional one-round encryption of all the ciphertexts.
Consequently, we can (abusively) consider that the adversary checks whether

g ◦ ρ = φ ◦ C
(r+2)
k (4.3)

holds in this case. As the distinguishing property was assumed to be non trivial, there
is no particular reason why (4.3) should hold, so that the adversary will easily check
that her guess is incorrect as (4.3) is likely to be false for several plaintext/ciphertext
pairs.

In practical attacks, it is usually only necessary to guess some bits of the
last round key in order to check the distinguishing property, the remaining bits being
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recovered by exhaustive search. Once kr+1 is recovered the adversary can peel-off
an entire round of the block cipher and iterate the whole process (usually, once a
distinguishing property can be found for a certain number of rounds, a distinguishing
property on fewer rounds is easy to find). In certain cases, recovering the last round
key can be sufficient to recover the key k.

As a distinguishing attack on C
(r)
k often leads to a key recovery on C

(r+1)
k , from

now on we only consider distinguishing attacks, i.e., attacks aiming at finding some
non trivial distinguishing property on the block cipher. We illustrate these notions by
introducing a concrete example, namely linear cryptanalysis.

4.3 Linear Cryptanalysis

Linear cryptanalysis is a known-plaintext attack proposed by Matsui in [110]
to break the DES [122], based on concepts introduced by Tardy-Corfdir and Gilbert
in [147]. It assumes that the plaintexts are independent and uniformly distributed in
the text space T = {0, 1}n, and consider linear (in the sense of GF(2)) binary projections
of the form

ρ(P ) = a • P = a0P0 ⊕ a1P1 ⊕ · · · ⊕ an−1Pn−1 ∈ {0, 1},
where a ∈ {0, 1}n is called a mask. Essentially, linear cryptanalysis aims at finding an
input mask a and an output mask b on r rounds of an iterated cipher C, such that

(a • P )⊕ (b • C
(r)
k (P )) = 0 (4.4)

holds with a probability far distant from 1
2 for all keys k ∈ K. More precisely, if one let

1
2 + ε be the probability that the linear relation (4.4) holds, then the efficiency of the
cryptanalysis based on it is known to depend on the linear probability coefficient [32]

LPa,b(Ck) = LP
(
(a • P )⊕ (b • C

(r)
k (P ))

)
= 4ε2

where the linear probability of a random bit B is defined by

LP(B) = (2Pr[B = 0]− 1)2 =
(
E

(
(−1)B

))2
.

The linear probability is often assumed to be close to the expected linear probability

ELPa,b(C) = EK (LPa,b(CK)) ,

an hypothesis referred to as the hypothesis of stochastic equivalence (a concept formal-
ized by Lai [94,97]).

In practice, to derive a linear relation such as (4.4) on an iterated cipher made
of r rounds, the cryptanalyst first derives adequate linear relations on each round of the
block cipher, such that the output mask of round i − 1 is equal to the input mask of
round i. This forms a so called characteristic (a0, a1, . . . , ar). Using Matsui’s piling-up
lemma, which states that for two independent random bits B1 and B2 we have

LP(B1 ⊕B2) = LP(B1)LP(B2),
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the cryptanalyst then usually assumes that

ELPa0,ar(C) ≈
r∏

i=1

ELPai−1,ai(R). (4.5)

This strategy is the one adopted by Matsui in his cryptanalysis of the DES. In that
particular case, the experiments justify the approximations [72,111].

Yet, Nyberg shows in [125] that the right hand-side of (4.5) essentially under-
estimates the true expected linear probability since, in the case of Markov ciphers [97]
(see Definition 8.8) we actually have

ELPa0,ar(C) =
∑

a1,...,ar−1

r∏

i=1

ELPai−1,ai(R),

a property which is often referred to as the linear hull effect. We emphasize the fact
that since the approximation (4.5) underestimates the true value of the expected linear
probability, it also underestimates the efficiency of the cryptanalysis. Whereas this is
perfectly acceptable from the point of view of the adversary (since the attack can only
perform better than expected), it is unfortunate to see the same approximation made
in so-called security proofs of block ciphers. For example, the maximum value (over
all non-zero input/output masks) of the expected linear probability over 8 rounds of
the AES was initially assumed to be less than 2−300 [41, pp.30–31], which is obviously
wrong: since for any input mask a, the sum over all the 2128 values of ELPa,b(AES)
is equal to 1, at least one must be greater than 2−128. Yet, in that particular case,
Keliher proves that the maximum value of the ELP’s can be bounded by 1.778 · 2−107

for 8 or more rounds [79–81]. In the cases of the block ciphers C and KFC that we
introduce in chapters 11 and 12 respectively, we manage to compute the exact value of
the expected linear probability (taking the linear hull effect into account) for various
number of rounds.

Other examples of statistical cryptanalytic attacks include differential crypt-
analysis (which is a chosen plaintext attack introduced by Biham and Shamir in [23]),
several of its variants (such as truncated differentials [88], impossible differentials [18]
or higher order differentials [88,95]), Vaudenay’s χ2 cryptanalysis [62,151], and integral
attacks [69,93]. An exhaustive review is provided by Junod in [73].
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Chapter 5

Notations and Elementary Results

We introduce in this last chapter the notations that will be used throughout
as well as some elementary results.

5.1 Random Variables, Probabilities, Strings, etc.

If Z is a finite set, we denote by |Z| its cardinality. Let P denote a probability
distribution over the finite set Z. We denote the fact that a random variable X is
drawn according to the distribution P by X ∼ P or X

P←− Z in the case of an algorithm.
The probability that X takes a particular value a ∈ Z is either denoted by PrP[a],
Pr[X = a], or P[a], where in the last case the probability distribution is simply seen as
a vector in [0, 1]|Z|. The support of P is the subset of Z made of all elements a such
that P[a] 6= 0 and is denoted by supp(P). The distribution P is said to be of full support
if supp(P) = Z. If A and B denote some random events such that Pr[A] > 0, we will
denote Pr[B|A] or PrA[B] the probability of the event B given the occurrence of the
event A.

If z1, z2, . . . , zq ∈ Z are q elements of Z, we denote by zq = (z1, z2, . . . , zq) ∈ Zq

the vector of Z having zi as its ith component. We adopt a similar notation for random
variables. If Z1, Z2, . . . , Zq ∈ Z are q independent and identically-distributed (i.i.d.)
random variables drawn according to distribution P, we denote by Pd the distribution
of Zq = (Z1, Z2, . . . , Zq) so that

Pr[Z1 = z1, Z2 = z2, . . . , Zq = zq] = Pr[Zq = zq] = PrPq [zq] = Pq[zq].

We note that since the random variables are assumed to be independent, it always holds
that Pq[zq] =

∏q
i=1 P[zi].

The set of all functions F from the finite set Z to R is a vector space of finite
dimension thus all norms ‖ · ‖ on this set define the same topology. The open ball of
radius ε > 0 around f0 ∈ F is the set Bε(f0) = {f ∈ F : ‖f − f0‖ < ε}. An open set
is a union of open balls. The interior of a set Π is the union of all open sets included

in Π and is denoted by
◦
Π. The closed ball of radius ε > 0 around f0 ∈ F is the set
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Bε(f0) = {f ∈ F : ‖f − f0‖ ≤ ε}. A closed set is an intersection of closed balls. The
closure of a set Π is the intersection of all closed sets containing Π and is denoted by
Π.

5.2 Vector Norms and Fundamental Inequalities

In this section we recall several fundamental inequalities valid for the specific
norms that we use throughout this thesis.

Definition 5.1 Let z1, z2, . . . , zn ∈ R and zn = (z1, z2, . . . , zn). Let r be a positive
integer. The r-norm of the vector zn is denoted ‖zn‖r and defined by

‖zn‖r =

(
n∑

i=1

|zi|r
)1/r

.

When r = 2, we obtain the Euclidean norm. The infinity norm of zn is denoted ‖zn‖∞
and is defined by

‖zn‖∞ = max
i=1,...,n

|zi| .

Theorem 5.1 (Cauchy’s Inequality) Let a,b ∈ Rn with a = a1, a2, . . . , an and
b = b1, b2, . . . , bn. We have ∣∣∣∣∣

n∑

i=1

aibi

∣∣∣∣∣ ≤ ‖a‖2 · ‖b‖2

with equality if and only if a and b are proportional (i.e., if there exists some non-zero
real value k such that ai = k · bi for all i ∈ {1, 2, . . . , n}.

Proof. We have

2‖a‖22 · ‖b‖22 − 2

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣
2

=
∑

i,j

a2
i b

2
j +

∑

i,j

a2
jb

2
i − 2

n∑

i,j

aibiajbj

=
∑

i,j

(aibj − ajbi)2 ≥ 0

with equality if and only if a and b are proportional.

Corollary 5.1 Let z = (z1, z2, . . . , zn) ∈ Rn and let r be a positive integer. We have

‖z‖r ≤ n
1
2r · ‖z‖2r
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with equality when zi = zj for all i, j = 1, 2, . . . , n.

Proof. Using Cauchy’s inequality with ai = |zi|r and bi = 1 allows us to conclude the
proof.

5.3 Asymptotic Notations

Most of the results obtained in Part II concern the asymptotic behaviours of
different types of distinguishers. We introduce in this section the main notation used
to express most of our results, together with its basics properties.

Definition 5.2 The fact that two strictly positive sequences (aq)q∈N and (bq)q∈N are
equal to the first order in the exponent, i.e., are such that

lim
q→∞

1
q

log
aq

bq
= 0,

is denoted aq
.= bq.

The fact that aq
.= bq is equivalent to aq = bqe

o(q). This notation is multiplica-
tive, in the sense that if aq, bq, cq, dq are strictly positive sequences such that aq

.= bq

and cq
.= dq then we have aqcq

.= bqdq.

Lemma 5.1 Let 0 < α ≤ β and let aq
.= 2−αq and bq

.= 2−βq. Then limq→∞ aq =
limq→∞ bq = 0. Moreover,

bq

aq

.= 2−(β−α)q and aq + bq
.= 2−αq.

Proof. We have

aq = 2−αq+o(q) q→∞−−−−→ 0.

The fact that bq

aq

.= 2−(β−α)q comes from multiplicativity. The last result comes from

aq + bq = aq

(
1 +

bq

aq

)
,

where aq
.= 2−αq so that showing that 1 + bq

aq

.= 1 would suffice to conclude by multi-

plicativity. When α = β we have 1 + bq

aq
= 2 .= 1. When β > α we let γ = β − α > 0

and have bq

aq

.= 2−γq, so that bq

aq
→ 0, which easily leads to 1 + bq

aq

.= 1.
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Chapter 6

Distinguishers Between Two Sources

6.1 A Typical Introduction to Simple Hypothesis Testing

In this section, we consider a simple game between an oracle, called the source,
generating independent and identically-distributed (i.i.d.) random values in some given
finite set, and an algorithm, called the distinguisher, that aims at determining the
distribution followed by the source.

More precisely, let Z be a finite set and let P0 and P1 be two probability
distributions over Z. Consider an oracle S, the source, which generates q samples
according to a distribution P ∈ {P0, P1}. We denote the values of the sample members
by Z1, Z2, . . . , Zq, the Zi’s being i.i.d. random variables following distribution P. These
values are the inputs of an algorithm Aq, the distinguisher, the objective of which is
to guess whether P = P0 (hypothesis H0, often referred to as the null hypothesis) or
P = P1 (hypothesis H1, often referred to as the alternate hypothesis) on the basis of
these q values (and of the knowledge of both P0 and P1). Aq is called a q-limited
distinguisher as we assume that it is computationally unbounded and only limited by
the sample size. This algorithm eventually outputs 0 (respectively 1) if its guess is
that H0 (respectively H1) holds. The distinguisher Aq can be defined by an acceptance
region Aq ⊂ Zq such that Aq outputs 1 when (Z1, Z2, . . . , Zq) ∈ Aq and 0 otherwise.
Finally, we note that since the distinguisher is computationally unbounded (and only
restricted by the sample size q), we can assume without loss of generality that it is fully
deterministic.

The situation just described is commonly referred to as the simple hypothesis
testing problem since both alternatives fully determine the distribution. A more complex
situation arises when one of the two hypotheses is composite, i.e., when the distinguisher
has to guess whether the distribution followed by the source is one particular distribution
(H0 : P = P0) or if it belongs to a set of several distributions (H1 : P ∈ {P1, . . . ,Pd},
where Pi 6= P0 for i = 1, . . . , d), which corresponds to the composite hypothesis. Finally,
the difficulty of the game can be increased from the point of view of the distinguisher if
the exact description of the composite hypothesis is not available. In that case, it shall
guess whether the source follows a specific (known) distribution (H0 : P = P0) or not
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b
u←− {0, 1} /* Random choice between P0 and P1 */1:

view← {P0, P1}2:

for i = 1, . . . , q do3:

Zi
Pb←−− Z4:

view← view ∪ {Zi}5:

end6:

b̂← Aq(view)7:

if b̂ = b then return 1 else return 08:

Algorithm 6.1: Game played by a q-limited distinguisher Aq between two prob-
ability distributions P0 and P1 over a finite set Z.

(H1 : P 6= P0).

Definition 6.1 Let Zq = Z1, Z2, . . . , Zq be q i.i.d. random variables sampled in a finite
set Z according to a distribution P. Let H0 and H1 be two hypotheses on P such that
one is true. A q-limited distinguisher Aq between H0 and H1 is an algorithm which (at
least) takes as an input the q samples and eventually outputs a bit b ∈ {0, 1} to indicate
that its guess is that Hb is true.

In all cases, the ability to distinguish the null hypothesis H0 from the alternate
hypothesis H1 is called the advantage of the distinguisher. We will first give a general
definition of this notion and detail the particular cases that we will consider in this
chapter.

Definition 6.2 Let Zq = Z1, Z2, . . . , Zq be q i.i.d. random variables sampled in a finite
set Z according to a distribution P. Let H0 and H1 be two hypotheses on P. The
advantage of a q-limited distinguisher Aq between H0 and H1 is defined by

AdvAq(H0,H1) = |PrH0 [Aq(Zq) = 1]− PrH1 [Aq(Zq) = 1]| .

In the simple hypothesis testing problem, we consider two distributions P0 and
P1 and try to distinguish between H0 : P = P0 and H1 : P = P1. In that specific
case, we also denote the advantage of a q-limited distinguisher Aq by AdvAq(P0,P1)
instead of AdvAq(H0, H1), and refer to Aq as a distinguisher between P0 and P1. One
can formalize this simple scenario as a game played by the distinguisher, described in
Algorithm 6.1. In such a case, the advantage of the distinguisher can be defined in a
different (yet equivalent) way.

Definition 6.3 (alternative when both hypotheses are simple) Let P0 and P1

be two probability distributions over a finite set Z. Let Aq be a q-limited distinguisher
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between P0 and P1 playing the game described in Algorithm 6.1 and let B denote the
event that the algorithm outputs 1. The advantage of Aq is

|2Pr[B]− 1| ,

where the probabilities hold over the random coins of the game.

Proposition 6.1 When both hypotheses are simple, definitions 6.2 and 6.3 are equiva-
lent.

Proof. Using the notations of Algorithm 6.1 we have

Pr[P ] = Pr[̂b = b]
= Pr[̂b = b|b = 0]Pr[b = 0] + Pr[̂b = b|b = 1]Pr[b = 1]
= 1

2(Pr[̂b = b|b = 0] + Pr[̂b = b|b = 1])

= 1
2(Pr[̂b = 0|b = 0] + Pr[̂b = 1|b = 1])

where the third equality comes from the fact that b is uniformly distributed. Thus
|2Pr[P ]− 1| is equal to

∣∣∣Pr[̂b = 1|b = 0]− Pr[̂b = 1|b = 1]
∣∣∣, which is how the advantage

in Definition 6.2 should be written when using the notations of the algorithm.

In the general case, the ability of Aq to distinguish between both hypotheses
can be expressed in another (equivalent) way. Obviously, Aq can make two kinds of
mistakes:

• it can either reject H0 whereas it is true, which is often called a type I error,

• or reject H1 whereas it is true, which is often called a type II error.

By definition, a type I error occurs with a probability PrH0 [A(Zq) = 1] and a type II
error with probability PrH1 [A(Zq) = 0]. Respectively denoting these probabilities by α
and β, one can define an overall probability of error Pe such that

Pe =
1
2
(α + β).

It is easy to see that the advantage of a distinguisher is related to its overall probability
of error by

AdvAq(H0, H1) = |1− 2Pe| .

6.2 An Alternate View through the Method of Types

Since the q samples Z1, Z2, . . . , Zq generated by the source are independent,
their particular order must be irrelevant. On the other hand, what matters is the
number of occurrences of each symbol of Z in the string Z1, Z2, . . . , Zq or, equivalently,
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the relative number of occurrence (frequency) of each symbol. We introduce here the
notion of type (or empirical probability distribution) of an i.i.d. sequence, and show in
Lemma 6.1 that the probability of occurrence of a given string is uniquely determined
by its type. Finally, we recall a fundamental theorem due to Sanov [133], that we will
later use to compute the asymptotic complexity of two distinguishers (namely the best
distinguisher and the χ2 distinguisher).

Definition 6.4 Let Z be a finite set. The type (or empirical probability distribution)
Pzq of a sequence zq ∈ Zq is the relative proportion of occurrences of each symbol of Z,
i.e.,

Pzq [a] =
N(a|zq)

q

for all a ∈ Z, where N(a|zq) is the number of times the symbol a occurs in the sequence
zq.

Definition 6.5 Given a finite set Z, we denote by P(Z) (or simply by P) the set of all
probability distributions defined over the finite set Z, and by Pq(Z) (or simply by Pq) the
set of probability distributions over Z in which probabilities are integral fractions of q.
Finally, we let P∞(Z) = ∪q>0Pq(Z) (or simply P∞) be the set of rational distributions.

Definition 6.6 For P ∈ P, we denote by Tq(P) the set of sequences of length q whose
type is equal to P, i.e.,

Tq(P) = {zq ∈ Zq : Pzq = P}.

Tq(P) is usually called the type class of P and is more commonly defined over
Pq (see [37, p.280]). Here we extend the definition to P and simply have Tq(P) = ∅
when P ∈ P \ Pq.

Definition 6.7 Let P0 and P1 be two probability distributions over a finite set Z. The
relative entropy or Kullback-Leibler distance between P0 and P1 is defined as

D(P0‖P1) =
∑

z∈Z
P0[z] log

P0[z]
P1[z]

=
∑

z∈supp(P0)

P0[z] log
P0[z]
P1[z]

with the convention that 0 log 0
p = 0, that p log p

0 = +∞ for p > 0, and that 0 log 0
0 = 0.

We note that D(P0‖P1) < +∞ if and only if the support of P0 is included in
the support of P1. In what follows, we will refer to this notion using the term relative
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entropy as, being non-symmetric, it is not exactly a distance. Nevertheless, it is always
positive since − log is convex.

Lemma 6.1 Let Z be a finite set and P be a probability distribution over Z. For all
z1, z2, . . . , zq ∈ Z we have

Pq[zq] = 2−q(H(Pzq )+D(Pzq‖P)).

Proof. We have

Pq[zq] =
q∏

i=1

P[zi] =
∏

a∈Z
P[a]N(a‖zq) =

∏

a∈Z
P[a]qPzq [a].

As for each a ∈ Z we have

P[a]qPzq [a] = 2qPzq [a] log P[a] = 2q
“
Pzq [a] log Pzq [a]−Pzq [a] log

Pzq [a]

P[a]

”
,

we obtain that

Pq[zq] = 2q
“P

a Pzq [a] log Pzq [a]−Pa Pzq [a] log
Pzq [a]

P[a]

”
= 2−q(H(Pzq )+D(Pzq‖P)).

According to Lemma 6.1, the probability of occurrence of a particular sequence
only depends on its type. As a consequence, from now on we will make the following
assumption about the acceptance region of the distinguishers we will consider.

Assumption 6.1 Let Aq ∈ Zq be the acceptance region of a q-limited distinguisher. If
zq belongs to Aq, then it is also the case for all the strings of Tq(Pzq), i.e.,

zq ∈ Aq ⇔ Tq(Pzq) ⊂ Aq.

Under the previous assumption, for each acceptance region Aq ⊂ Zq of a
q-limited distinguisher, there exists a subset Πq ⊂ Pq(Z) such that

P ∈ Πq ⇔ Tq(P ) ⊂ Aq.

The advantage of the distinguisher can then be written as

AdvAq(P0, P1) =

∣∣∣∣∣∣
∑

zq∈Aq

Pq
0[z

q]−
∑

zq∈Aq

Pq
1[z

q]

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

zq∈Aq

2−q(H(Pzq )+D(Pzq‖P0)) −
∑

zq∈Aq

2−q(H(Pzq )+D(Pzq‖P1))

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

P∈Πq

|Tq(P )| 2−q(H(P )+D(P‖P0)) −
∑

P∈Πq

|Tq(P )| 2−q(H(P )+D(P‖P1))

∣∣∣∣∣∣
.
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We summarize the assumptions and some of the results obtained in this section
in the following definition.

Definition 6.8 (Acceptance Region) Let Z be a finite set. The sample acceptance
region of a q-limited distinguisher Aq is a subset A ⊂ Zq such that for any string zq of
q symbols of Z we have

Aq(zq) = 1 ⇔ zq ∈ A.

The type acceptance region of Aq is a subset Πq ⊂ Pq(Z) such that for any distribution
P ∈ Pq(Z) we have

P ∈ Πq ⇔ Tq(P ) ⊂ A.

When clear from the context, we might simply call acceptance region either
sample or type acceptance regions.

To conclude this section, we recall a fundamental result that will be the basis
of the data complexity analysis of specific distinguishers, such as the best distinguisher
in subsection 6.4. We first note that, from a topological viewpoint, P is a compact
subset of the vector space R|Z| which is of finite dimension. Its topology can therefore
by defined by any norm, e.g., the infinite norm ‖P‖∞ = maxz |P (z)|.

Theorem 6.1 (Sanov’s theorem [133]) Let P be a probability distribution over a
finite set Z, Z ′ be a non-empty subset of Z, and Π be a set of probability distributions
of full support over Z ′. If Z1, Z2, . . . , Zq are q i.i.d. random variables drawn according
to the distribution P, we have

Pr[PZq ∈ Π] ≤ (q + 1)|Z|2−qD(Π‖P),

where D(Π‖P) = infP′∈Π D(P′‖P). Moreover, if the closure of Π ⊂ P(Z ′) is equal to the

closure of its interior, i.e., if Π =
◦
Π under the topology of probability distributions over

Z ′, then
Pr[PZq ∈ Π] .= 2−qD(Π‖P).

Proof. A proof of this result is given in Appendix A.

6.3 The Best Distinguisher: an Optimal Solution

Since Pq is finite for any given fixed q, this is also the case for the number of
sample acceptance regions of q-limited distinguishers. Consequently, there exists one
distinguisher A?

q which maximizes the advantage, i.e., such that for all distinguisher Aq,

AdvA?
q
(P0, P1) ≥ AdvAq(P0, P1).
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In what follows, we denote by BestAdvq(P0,P1) the advantage of A?
q , i.e.,

BestAdvq(P0, P1) = max
Aq

AdvAq(P0,P1),

where the maximum is taken over all q-limited distinguishers. It is possible to give an
explicit description of A?

q by deriving an adequate acceptance region1.

Definition 6.9 Let P0 and P1 be two probability distributions over a finite set Z. Let q
be a positive integer. The function

LR : Zq −→ R+ ∪ {+∞, NaN}
zq 7−→ LR(zq) = Pq

0[zq ]

Pq
1[zq ]

is the q-limited likelihood ratio (or simply likelihood ratio), with the convention that
p
0 = +∞ for p > 0 and that 0

0 = NaN. The function

LLR : Zq −→ R ∪ {−∞, +∞, NaN}
zq 7−→ LLR(zq) = log (LR(zq))

is the q-limited logarithmic likelihood ratio (or simply logarithmic likelihood ratio), with
the convention that log 0

p = −∞, that log p
0 = +∞ for p > 0, and that log 0

0 = NaN.

Proposition 6.2 Let P0 and P1 be two probability distributions over a finite set Z. The
q-limited distinguisher A?

q defined by the sample acceptance region

A?
q = {zq ∈ Zq : LR(zq) ≤ 1} = {zq ∈ Zq : LLR(zq) ≤ 0}

is optimal in the sense that its advantage is BestAdvq(P0,P1).

Proof. To prove this proposition, we show that an arbitrary distinguisher has a smaller
advantage than A?

q . Let Aq be an arbitrary q-limited distinguisher and Aq be its ac-
ceptance region. Without loss of generality, we can assume that PrH1 [Aq(Zq) = 1] ≥
PrH0 [Aq(Zq) = 1] holds2. By definition we thus have

AdvAq(P0,P1) = PrH1 [Aq(Zq) = 1]− PrH0 [Aq(Zq) = 1].

Since the distinguisher outputs 1 if the sample zq that it receives belongs to its accep-
tance region Aq, we have

PrHi [Aq(Zq) = 1] =
∑

zq∈Aq

Pq
i [z

q]

1The method described here is similar to the proof of the Neyman-Pearson lemma [123] that was
used by Junod and Vaudenay in order to derive optimal key ranking procedures for block cipher crypt-
analysis [75].

2Otherwise we replace Aq by Ac
q, and obtain a distinguisher with the exact same advantage as Aq

but such that the inequality is true.
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for i ∈ {0, 1}. Thus,

AdvAq(P0, P1) =
∑

zq∈Aq

(Pq
1[z

q]− Pq
0[z

q]) ≤
∑

zq∈A+
q

(Pq
1[z

q]− Pq
0[z

q]) ,

where A+
q ⊂ Aq is the set of all zq ∈ Aq such that Pq

1[z
q] − Pq

0[z
q] ≥ 0. Since A?

q is by
definition the set of all zq ∈ Zq such that Pq

1[z
q]− Pq

0[z
q] ≥ 0, we have A+

q ⊂ A?
q and

∑

zq∈A+
q

(Pq
1[z

q]− Pq
0[z

q]) ≤
∑

zq∈A?
q

(Pq
1[z

q]− Pq
0[z

q]) = AdvA?
q
(P0, P1),

which allows to conclude that AdvAq(P0,P1) ≤ AdvA?
q
(P0,P1).

We note that if supp(P0) 6= supp(P1), the LLR might become infinite. How-
ever, it never occurs that LLR(zq) = NaN in practice.

We conclude this subsection with a link between the advantage of the best
distinguisher and (simplified) distribution vectors from Vaudenay’s Decorrelation The-
ory [155]. Given the sample size q, let [P0]q and [P1]q be the vectors defined by

[Pj ]qz1,...,zq
= Pq

j [z
q] for j ∈ {0, 1}.

Using the notations of Proposition 6.2, the probability that A?
q outputs 1 in the case

where the source follows distribution Pj is
∑

zq∈A?
q
[Pj ]

q
zq for j ∈ {0, 1}. From Defini-

tion 6.2 and from the definition of A?
q we have

BestAdvq(P0, P1) =

∣∣∣∣∣∣
∑

zq∈A?
q

([P0]
q
zq − [P1]

q
zq)

∣∣∣∣∣∣
=

∑

zq∈A?
q

([P1]
q
zq − [P0]

q
zq).

Since
∑

zq∈A?
q

([P1]
q
zq − [P0]

q
zq) +

∑

zq∈A?
q

([P1]
q
zq − [P0]

q
zq) =

∑

zq∈Zq

[P1]
q
zq −

∑

zq∈Zq

[P0]
q
zq = 0,

this gives

2BestAdvq(P0, P1) =
∑

zq∈A?
q

([P1]
q
zq − [P0]

q
zq)−

∑

zq∈A?
q

([P1]
q
zq − [P0]

q
zq)

=
∑

zq∈A?
q

|[P1]
q
zq − [P0]

q
zq |+

∑

zq∈A?
q

|[P1]
q
zq − [P0]

q
zq |

=
∑

zq∈Zq

|[P1]
q
zq − [P0]

q
zq | .

We summarize this result in the following proposition.

Proposition 6.3 Let P0 and P1 be two probability distributions over a finite set Z. The
advantage of the best q-limited distinguisher between P0 and P1 is

BestAdvq(P0, P1) =
1
2
‖[P0]q − [P1]q‖1,
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where the ‖ · ‖1 norm of a vector A = {Ai}i is defined by ‖A‖1 =
∑

i |Ai|.

The statistical framework proposed in [35] by Coppersmith et al. is based on
this norm.

6.4 The Best Distinguisher: Data Complexity Analysis

In the previous section we showed how to compute the advantage of the best
q-limited distinguisher for some given q. Here we consider the case where the advantage
is fixed and wonder how large the sample size q must be, so that the best distinguisher
achieves this advantage.

We first note that the logarithmic likelihood ratio can be expressed in terms
of the relative entropy and of the type of the sample received by the distinguisher [37].

Lemma 6.2 Let Z be a finite set and z1, . . . , zq be a sequence of q elements in Z. If
LLR(zq) = NaN we have supp(Pzq) 6⊂ supp(P0) and supp(Pzq) 6⊂ supp(P1). Otherwise,

LLR(zq) = q (D(Pzq‖P1)−D(Pzq‖P0)) .

Proof. If LLR(zq) = −∞ it means that Pq
1[z

q] > 0 and Pq
0[z

q] = 0, so that supp(Pzq) ⊂
supp(P1) and supp(Pzq) 6⊂ supp(P0). As a consequence, D(Pzq‖P1) is finite while
D(Pzq‖P0) = +∞, so that we indeed have

q (D(Pzq‖P1)−D(Pzq‖P0)) = −∞,

and the equality is verified. The case where LLR(zq) = +∞ can be treated similarly.
When LLR(zq) is finite, using the notations of Definition 6.4 we have

LLR(zq) = log
q∏

i=1

P0[zi]
P1[zi]

=
q∑

i=1

log
P0[zi]
P1[zi]

=
∑

z∈Z
N(z|zq) log

P0[z]
P1[z]

.

Introducing the empirical probability distribution of the sequence zq, we obtain

LLR(zq) = q
∑

z∈Z
Pzq [z] log

P0[z]
P1[z]

Pzq [z]
Pzq [z]

= q
∑

z∈Z

(
Pzq [z] log

Pzq [z]
P1[z]

)
− q

∑

z∈Z

(
Pzq [z] log

Pzq [z]
P0[z]

)

= q (D(Pzq‖P1)−D(Pzq‖P0)) .

Following Proposition 6.2 and Lemma 6.2, we can easily derive the distribution

– 39 –



Chapter 6 Distinguishers Between Two Sources

acceptance region of the best distinguisher.

Proposition 6.4 Let P0 and P1 be two probability distributions over a finite set Z. Let

L : P −→ R ∪ {+∞,−∞, NaN}
P 7−→ L(P) =

∑
z∈supp(P) P[z] log P0[z]

P1[z]

with the convention that p log q
0 = +∞, p log 0

q = −∞, and that p log 0
0 = ±∞∓∞ = NaN

(for p, q > 0). Let

Π? = {P ∈ P : D(P‖P1)−D(P‖P0) ≤ 0} = {P ∈ P : L(P) ≤ 0}.

The q-limited distinguisher A?
q defined by the distribution acceptance region Π?

q = Π?∩Pq

is optimal in the sense that its advantage is BestAdvq(P0, P1).

The previous proposition shows that the best distinguisher shall choose the
distribution Pb which is the closest one (in the sense of the relative entropy) from the
type of the sequence.

In practice, the output of L cannot be NaN. Indeed, this situation occurs when
there exists z such that P[z] > 0 and P0[z] = P1[z] = 0, or when there exists distinct
z, z′ ∈ supp(P) such that P0[z] > 0, P1[z] = 0, P1[z′] > 0, and P0[z′] = 0. Since L is
evaluated in some Pzq where the zi’s where sampled according to either P0 or P1, it
is always the case that supp(Pzq) ⊂ supp(P0) or that supp(Pzq) ⊂ supp(P1), so that
neither of the two previous situations can occur.

Lemma 6.3 The set Π? defined in Proposition 6.4 is convex.

Proof. Let P, P′ ∈ Π? and t ∈ [0, 1]. Since L is linear, we have

L(tP + (1− t)P′) = tL(P) + (1− t)L(P′) ≤ 0.

The following theorem (which actually is another way of formulating a result
from Chernoff [34]) gives the number of samples the best distinguisher A?

q needs to
achieve a given probability of error of type I (see page 33), in the case where both
distributions are of full support.

Theorem 6.2 Let P0 and P1 be two probability distributions of full support over a finite
set Z. Let F : [0, 1]→ R be the function defined by

F(λ) =
∑

z∈Z
P0[z]1−λP1[z]λ

and let
C(P0, P1) = − inf

0<λ<1
log F(λ) = − min

0≤λ≤1
log F(λ)
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be the Chernoff information between P0 and P1. The probability of error of type I of
the best q-limited distinguisher A?

q is such that

PrH0 [A
?
q(Z

q) = 1] .= 2−qC(P0,P1) =
(

min
λ∈[0,1]

F(λ)
)q

. (6.1)

Proof. For P0 = P1 the result is trivial. We now assume that P0 and P1 are distinct
which ensures that there exists z ∈ Z such that 0 < P0[z] < P1[z] and z′ ∈ Z such that
z′ 6= z and 0 < P1[z′] < P0[z′].

According to Proposition 6.4, the best q-limited distinguisher A?
q is defined by

an acceptance region Π?
q = Π? ∩ Pq where

Π? = {P ∈ P : D(P‖P1)−D(P‖P0) ≤ 0} = {P ∈ P : L(P) ≤ 0},
using the notations of the proposition. If z is such that 0 < P0[z] < P1[z], the distribu-
tion P ∈ P such that P[z] = 1 belongs to Π? since L(P) = log P0[z]

P1[z] < 0. This ensures
that Π? is nonempty.

Considering the topology of P (as discussed on page 36), we note that L is
continuous. Since there exists P ∈ Π? such that L(P) < 0, then, for a sufficiently small
ε > 0, all distributions within a distance to P smaller than ε are in Π? as well. This
means that the interior of Π? is nonempty.

Since Π? is a nonempty and convex set (see Lemma 6.3), we have
◦

Π? = Π? so
that we can apply Theorem 6.1 and obtain

PrH0 [A
?
q(Z

q) = 1] .= 2−qD(Π?‖P0).

We now show that D(Π?‖P0) is actually equal to C(P0,P1).
The set Π? is topologically closed : Since both P0 and P1 are of full support,

L(P) ∈ R for all P ∈ P. Consequently, (Π?)c = {P ∈ P : L(P ) > 0}. It is easy to
see that there exists P ∈ P such that L(P) > 0 (so that (Π?)c is nonempty) and that,
since L is continuous, all distributions at a sufficiently small distance of P are in (Π?)c

as well. This shows that any P ∈ (Π?)c is the center of an open ball included in (Π?)c,
which makes (Π?)c an open set and thus, Π? is closed.

Since Π? is closed and bounded in the Euclidean space R|Z|, it is compact. Since
P 7→ D(P‖P0) is continuous, the extreme value theorem states D(Π?‖P0) = D(P‖P0)
for some P ∈ Π?: there exists a global minimum for this function in Π?. Furthermore,
since the function P 7→ D(P‖P0) is convex, the set of P’s such that D(P‖P0) < r is a
convex set for any radius r > 0. As a consequence, there is no local minimum in Π?

which is not global as well. Finally, if P reaches a minimum, then the segment between
P0 and P (excluding P itself) contains distributions closer to P0, and thus, must be
outside of Π?: the value of L on these points must be non-negative. So, either the
segment is reduced to P0 (meaning that L(P0) ≤ 0) or we must have L(P) = 0 for the
closest P ∈ Π? of P0, due to the continuity of L. Since the former case is impossible (as
L(P0) = D(P0‖P1) > 0 since P0 6= P1), then only the latter case can be true.
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The problem now reduces to an optimization problem under constraints since
we need to minimize P 7→ D(P‖P0) under the conditions that L(P) = c (where c is
a constant) and that N(P) =

∑
z∈Z P[z] = 1. According to the method of Lagrange

multipliers, a minimum can only be obtained in a point P such that

∇D(P‖P0) = λ∇L(P) + µ∇N(P)

for some λ, µ ∈ R. Solving the previous equation under the two constraints leads to a
solution of the form

Pλ[z] =
P0[z]1−λP1[z]λ∑

a∈Z P0[a]1−λP1[a]λ
.

Moreover, it is easy to check that for distinct a and b we have

∂2D(P‖P0)
∂P[a]∂P[b]

= 0 and
∂2D(P‖P0)

∂P[a]2
> 0

so that Pλ is indeed a minimum.
Finally, we look for a Pλ such that c = 0, i.e., such that L(Pλ) = 0. Letting

f : R→ R be the function defined by

f(λ) = log
∑

a∈Z
P0[a]1−λP1[a]λ

we note that
D(Pλ‖P0) = −λL(Pλ)− f(λ) (6.2)

and that f ′(λ) = −L(Pλ). Since f ′(0) = −L(P0) < 0 and f(0) = f(1) = 0, there
must exist λ? ∈ [0, 1] such that f ′(λ?) = 0 and such that f(λ?) is minimal on [0, 1].
This minimum is clearly −C(P0,P1). We deduce that L(Pλ?) = 0 so that Pλ? is the
closest distribution to P0 in Π?. From (6.2) we deduce that D(Π?‖P0) = D(Pλ?‖P0) =
−f(λ?) = C(P0, P1), which concludes the proof.

We stress the fact that the validity of the previous theorem is indeed limited
to distributions that have the same support. Indeed the result is wrong in the general
case as the following example shows.

Example 6.1 Let Z = {0, 1, 2, . . . , n} for some n > 0 and define the distributions P0

and P1 over Z by

P0 =
(

0,
1
n

, . . . ,
1
n

)
and P1 =

(
1

n + 1
,

1
n + 1

, . . . ,
1

n + 1

)
.

The common support is Z ′ = {1, 2, . . . , n}. Letting L be as in Proposition 6.4, we have
L(P) > 0 for any distribution P such that supp(P) ⊂ Z ′. Consequently, we always have

PrH0 [A
?
q(Z

q) = 1] = 0.
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On the other hand, letting F be as in Theorem 6.2, we have

F (λ) =
(

n

n + 1

)λ

.

This function is decreasing so that inf0<λ<1 F (λ) = F (1) = n
n+1 , and thus C(P0,P1) =

log(1 + 1/n), which shows that if the assumption made on the common support in
Theorem 6.2 does not hold, then the conclusions of the theorem do not hold either. We
further note that by exchanging P0 and P1 we obtain the same Chernoff information
(which is not surprising since the expression is symmetric) but an error probability of
type II equal to (1− 1

n+1)q, which is correct.

We will now extend the validity of the previous theorem to arbitrary distri-
butions, that is, to distributions with arbitrary supports. We will actually show (in
Theorem 6.3) that the expression obtained for the asymptotic behavior of the type I
probability of error is actually too restrictive when considering arbitrary distributions,
namely, λ should be free to take values greater than 1. We first prove a lemma that we
then use to prove Theorem 6.3.

Lemma 6.4 Let P0 be a probability distribution of full support over a finite set Z and
let g : Z → ]0,+∞[ be a strictly positive function over Z. Given a distribution P over
Z we define

L(P) =
∑

z∈Z
P[z] log

P0[z]
g(z)

and let Π = {P ∈ P : L(P) ≤ 0}. Let F : R→ R be the function defined by

F(λ) =
∑

z∈Z
P0[z]1−λg(z)λ.

The probability of error of type I of the q-limited distinguisher Aq defined by the set of
acceptance Πq = Π ∩ Pq is such that

PrH0 [Aq(Zq) = 1] .=
(

inf
λ>0

F(λ)
)q

.

Proof. If P0[z] > g(z) for all z ∈ Z, the type I error probability is equal to P0[E ]q where
E is the set of all z ∈ Z such that P0[z] = g(z). Since infλ>0 F(λ) = limλ→0 F(λ) = P0[E ]
in this case, the result holds.

We now assume that there exists z ∈ Z such that 0 < P0[z] < g(z). Clearly, the
distribution P such that P[z] = 1 verifies L(P) < 0, so that Π is nonempty. Considering
the topology of P (as discussed on page 36), we note that L is continuous. Since there
exists P ∈ Π such that L(P) < 0, then, for a sufficiently small ε > 0, all distributions
within a distance to P smaller than ε are in Π as well. This means that the interior of
Π is nonempty.
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Since Π is a nonempty and convex set (since L is linear), we have
◦
Π = Π so

that we can apply Theorem 6.1 and obtain

PrH0 [Aq(Zq) = 1] .= 2−qD(Π‖P0). (6.3)

We now show that D(Π‖P0) is actually equal to − infλ>0 log F(λ).
The set Π is topologically closed : Since P0 is of full support and g(z) > 0 for

all z ∈ Z, L(P) ∈ R for all P ∈ P. Consequently, Πc = {P ∈ P : L(P ) > 0}. It is easy
to see that there exists P ∈ P such that L(P) > 0 (so that Πc is nonempty) and that,
since L is continuous, all distributions at a sufficiently small distance of P are in Πc as
well. This shows that any P ∈ Πc is the center of an open ball included in Πc, which
makes Πc an open set and thus, Π is closed.

Since Π is closed and bounded in the Euclidean space R|Z|, it is compact. Since
P 7→ D(P‖P0) is continuous, the extreme value theorem states D(Π‖P0) = D(P‖P0) for
some P ∈ Π: there exists a global minimum for this function in Π. Furthermore, since
the function P 7→ D(P‖P0) is convex, the set of P’s such that D(P‖P0) < r is a convex
set for any radius r > 0. As a consequence, there is no local minimum in Π which is not
global as well. Finally, if P reaches a minimum, then the segment between P0 and P
(excluding P itself) contains distributions closer to P0, and thus, must be outside of Π:
the value of L on these points must be non-negative. So, either the segment is reduced
to P0 (meaning that L(P0) ≤ 0) or we must have L(P) = 0 for the closest P ∈ Π? of P0,
due to the continuity of L.

The problem now reduces to an optimization problem under constraints since
we need to minimize P 7→ D(P‖P0) under the conditions that L(P) = c (where c is
a constant) and that N(P) =

∑
z∈Z P[z] = 1. According to the method of Lagrange

multipliers, a minimum can only be obtained in a point P such that

∇D(P‖P0) = λ∇L(P) + µ∇N(P)

for some λ, µ ∈ R. Solving the previous equation under the two constraints leads to a
solution of the form

Pλ[z] =
P0[z]1−λg(z)λ

∑
a∈Z P0[a]1−λg(a)λ

.

Moreover, it is easy to check that for distinct a and b we have

∂2D(P‖P0)
∂P[a]∂P[b]

= 0 and
∂2D(P‖P0)

∂P[a]2
> 0

so that Pλ is indeed a minimum.
Finally, we look for a Pλ such that c = 0, i.e., such that L(Pλ) = 0. Letting

f : R→ R be the function defined by

f(λ) = log
∑

a∈Z
P0[a]1−λg(a)λ

we note that
D(Pλ‖P0) = −λL(Pλ)− f(λ) (6.4)
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and that f ′(λ) = −L(Pλ). As previously noted, there are two eventualities: either
L(P0) ≤ 0 (i.e., P0 is in Π) or the closest P ∈ Π to P0 verifies L(P) = 0:

• If L(P0) ≤ 0, then f ′(0) ≥ 0. We can see that

f ′(λ) =

∑
z∈Z P0[z]1−λg(z)λ log g(z)

P0[z]∑
a∈Z P0[a]1−λg(a)λ

.

The denominator is always positive and it is easy to show that the nominator is
an increasing function of λ. Since f ′(0) ≥ 0, this means that f ′(λ) ≥ 0 for all
λ ≥ 0, so that the minimum of f over [0, +∞[ is f(0) = 0. Since we also have
D(Π‖P0) = 0, the lemma is correct in this case.

• If L(P0) > 0, then f ′(0) < 0. Moreover, since we assumed that there exists z ∈ Z
such that 0 < P0[z] < g(z), then limλ→+∞ f(λ) = +∞. Consequently, there must
exists λ? > 0 such that f ′(λ?) = 0 (and thus such that L(Pλ?) = 0) and for which
f is minimal. This minimum is clearly infλ>0 log F(λ). Combining this with (6.3)
and (6.4) concludes the proof.

Theorem 6.3 Let P0 and P1 be two probability distribution of finite supports with union
Z and intersection Z ′. Given a distribution P over Z we define

L(P) =
∑

z∈Z
P[z] log

P0[z]
P1[z]

,

where L(P) can be infinite or undefined, and let Π = {P ∈ P : L(P) ≤ 0}. Let
F : R→ R be the function defined by

F(λ) =
∑

z∈Z′
P0[z]1−λP1[z]λ.

The probability of error of type I of the q-limited distinguisher Aq defined by the set of
acceptance Πq = Π ∩ Pq is such that

PrH0 [Aq(Zq) = 1] .=
(

inf
λ>0

F(λ)
)q

. (6.5)

Proof. Let P′0 be the distribution of full support over Z ′ = supp(P0)∩supp(P1), defined
by

P′0[z] =

{
P0[z]
P0[Z′] if z ∈ Z ′
0 otherwise.
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Let g : Z → R be the function defined by

g(z) =

{
P1[z]
P0[Z′] if z ∈ Z ′
0 otherwise.

Similarly to Lemma 6.4, for any distribution P over Z ′ we define

L′(P) =
∑

z∈Z′
P[z] log

P′0[z]
g(z)

and Π′ = {P ∈ P(Z ′) : L′(P) ≤ 0}. Clearly, we have L(P) = L′(P) for any distribution
P over Z ′. Consequently, Π consists of Π′ together with the distributions which support
is included in that of P1 but not in that of P0 (in which case the value obtained for
L is −∞). Since the probability of reaching one of the latter distributions is 0 when
sampling according to distribution P0, we have

PrH0 [Aq(Zq) = 1] = PrH0 [PZq ∈ Π′],

where

PrH0 [PZq ∈ Π′] = PrH0 [PZq ∈ Π′|Z1, . . . , Zq ∈ Z ′]PrH0 [Z1, . . . , Zq ∈ Z ′]
since PrH0 [PZq ∈ Π′|Z1, . . . , Zq /∈ Z ′] = 0. We have PrH0 [Z1, . . . , Zq ∈ Z ′] = (P0[Z ′])q

and it is easy to show that

PrH0 [PZq ∈ Π′|Z1, . . . , Zq ∈ Z ′] = PrP=P′0 [PZq ∈ Π′].

From the previous equations we finally obtain

PrH0 [Aq(Zq) = 1] = (P0[Z ′])q · PrP=P′0 [PZq ∈ Π′].

Applying Lemma 6.4 to the right-hand side of the previous equation, we get

PrP=P′0 [PZq ∈ Π′] .=
(

inf
λ>0

G(λ)
)q

where

G(λ) =
∑

z∈Z′
P′0[z]1−λg(z)λ =

1
P0[Z ′]

∑

z∈Z′
P0[z]1−λP1[z]λ.

Combining the three previous equations allows to conclude.

We will illustrate Theorem 6.3 on practical examples in section 6.5. Before
that, we show that the previous theorem allows to easily deduce the asymptotic behavior
of the advantage of the best distinguisher in the general case.

Corollary 6.1 Let P0 and P1 be two probability distribution of finite supports with union
Z and intersection Z ′. Let F : R→ R be the function defined by

F(λ) =
∑

z∈Z′
P0[z]1−λP1[z]λ
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and let
C(P0, P1) = − inf

0<λ<1
log F(λ) (6.6)

be the Chernoff information between P0 and P1. The advantage of the best q-limited
distinguisher between P0 and P1 is such that

1− BestAdvq(P0, P1)
.= 2−qC(P0,P1) =

(
inf

0<λ<1
F(λ)

)q

.

Proof. The advantage of the best q-limited distinguisher A?
q is such that can be written

as
1− BestAdvq(P0, P1) = PrH0 [A

?
q(Z

q) = 1] + PrH1 [A
?
q(Z

q) = 0].

The acceptance region of A?
q being Π? = {P ∈ P : L(P) ≤ 0} where

L(P) =
∑

z∈supp(P)

P[z] log
P0[z]
P1[z]

(according to Proposition 6.4 and using the notations of the proposition), we can apply
Theorem 6.3 and obtain

PrH0 [A
?
q(Z

q) = 1] .=
(

inf
λ>0

F(λ)
)q

where F(λ) =
∑

z∈Z′ P0[z]1−λP1[z]λ.
On the other hand, we can see that by symmetry one can get

PrH1 [A
?
q(Z

q) = 0] = PrH1 [L(PZq) > 0]
≤ PrH1 [L(PZq) ≥ 0]
= PrH1 [−L(PZq) ≤ 0]

.=
(

inf
λ>0

G(λ)
)q

where G(λ) =
∑

z∈Z′ P1[z]1−λP0[z]λ = F(1− λ).
Consequently, if infλ>0 F(λ) > infλ<1 F(λ), we obtain 1− BestAdvq(P0, P1)

.=
(infλ>0 F(λ))q. If infλ>0 F(λ) < infλ<1 F(λ), we can exchange the roles of P0 and P1

and similarly obtain 1− BestAdvq(P0, P1)
.= (infλ<0 F(λ))q. In all cases we get

1− BestAdvq(P0, P1)
.=

(
inf
λ>0

F(λ)
)q

+
(

inf
λ<1

F(λ)
)q

.

If the minimum of F is reached for some λ ∈ ]0, 1[ we are done. Otherwise, we first
note that F′(λ) =

∑
z∈Z′ P0[z]1−λP1[z]λ log P0[z]

P1[z] and

F′′(λ) =
∑

z∈Z′
P0[z]1−λP1[z]λ

(
log

P0[z]
P1[z]

)2

≥ 0,
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so that F′ is an increasing function. If the minimum of F is reached for λ ≤ 0, then
it must be the case that infλ>0 F(λ) = F(0) and that infλ<1 F(λ) ≤ F(0), so that we
obtain 1 − BestAdvq(P0, P1)

.= F(0)q. Similarly, if the minimum is reached for λ ≥ 1,
we necessarily have infλ<1 F(λ) = F(1) and infλ>0 F(λ) ≤ F(1), so that in this case
1− BestAdvq(P0,P1)

.= F(1)q. Hence, in all cases we can write

1− BestAdvq(P0, P1)
.=

(
inf

0<λ<1
F(λ)

)q

which concludes the proof.

6.5 The Best Distinguisher: Examples and Pathological Dis-

tributions

In this subsection we will consider several practical pairs of distributions and
compute both the exact value of the advantage of the best distinguisher and its asymp-
totic value using Corollary 6.1. We will also illustrate the fact that (6.1) in Theorem 6.2
can prove to be wrong in the case where both distributions do not have the same support,
the correct value of the error probability being obtained using (6.5). Unless otherwise
stated, in these examples P0 and P1 are two probability distributions of finite supports
with union Z = {0, 1, . . . , n} for some positive integer n and intersection Z ′.

Example 6.2 We consider the trivial case where Z ′ = ∅. Obviously, after one query the
logarithmic likelihood ration will already take its final value (either −∞ or +∞) and
we have BestAdvq(P0, P1) = 1 for all q > 0. This is coherent with Corollary 6.1 since
we have C(P0,P1) = +∞ and thus 2−qC(P0,P1) = 0. We similarly see that Theorem 6.3
holds since F(λ) = 0 and since we indeed have that the probability of error is 0 in this
case.

Example 6.3 We reconsider here Example 6.1. Let P0 = (0, 1
n , . . . , 1

n) and P1 =
( 1

n+1 , . . . , 1
n+1). Using Proposition 6.3 is is easy to show that

BestAdvq(P0, P1) = 1−
(

1− 1
n

)q

.

The Chernoff information between P0 and P1 is given by

C(P0, P1) = − inf
0<λ<1

log
∑

z∈Z′
P0[z]1−λP1[z]λ = − log

(
1− 1

n

)
,

so that Corollary 6.1 states that

1− BestAdvq(P0, P1)
.=

(
1− 1

n

)q

.
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We note that in this particular case, the corollary gives an exact value of the advantage,
and thus tells more than just the asymptotic behavior. Concerning the type I error
probability, using the notations of Theorem 6.3 we have

F(λ) =
(

1− 1
n

)λ

so that infλ>0 F(λ) = limλ→∞ F(λ) = 0. Theorem 6.3 then states that PrH0 [A
?
q(Z

q) =
1] .= 0, which is correct since the best distinguisher never makes a wrong guess under
hypothesis H0 as we have

L(PZq) =
∑

z∈Z′
PZq [z] log

n + 1
n

> 0

in this case.

Example 6.4 Let P0 = (0, 1
n , 1

n , . . . , 1
n) and P1 = ( 1

n , 0, 1
n , . . . , 1

n). We have Z ′ =
{2, 3, . . . , n}. According to Theorem 6.3, and since F(λ) = 1− 1

n for all values of λ, we
have

PrH0 [A
?
q(Z

q) = 1] .=
(

1− 1
n

)q

.

Indeed, according to the definition of the acceptance region of the best distinguisher
given in Proposition 6.4, we clearly have that

PrH0 [A
?
q(Z

q) = 1] = PrH0 [Z1 6= 1, . . . , Zq 6= 1] = (1− P0[1])q =
(

1− 1
n

)q

,

which shows that the theorem is correct and quite precise in this case also. It is easy
to see that we have PrH1 [A

?
q(Z

q) = 0] = 0, and thus that

BestAdvq(P0, P1) = 1−
(

1− 1
n

)q

.

Corollary 6.1 thus gives us more than the asymptotic behavior of the advantage of the
best distinguisher since we have in this case C(P0, P1) = − log

(
1− 1

n

)
, which leads to

1− BestAdvq(P0,P1)
.=

(
1− 1

n

)q

.

Example 6.5 Let Z = {0, 1, 2, 3} and P0 = (1
3 , 1

3 , 1
3 , 0) and P0 = (1

4 , 1
2 , 0, 1

4). We have
Z ′ = {0, 1} and in this case the smallest value of

F(λ) =
1
3

(
3
4

)λ

+
1
3

(
3
2

)λ
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over λ > 0 is achieved for λ→ 0, the limit being equal to 2
3 . We deduce that

C(P0,P1) = − log
2
3

and that

1− BestAdvq(P0, P1)
.=

(
2
3

)q

.

6.6 The Best Distinguisher: Case where the Distributions

are Close to Each Other

In order to obtain an expression of the advantage of the best distinguisher
easier to deal with in practice than that given in Corollary 6.1, we will derive a simple
expression approximating the Chernoff information. We consider the case where P0 and
P1 are both of full support over Z by letting

εz =
P1[z]− P0[z]

P0[z]

and assuming that εz = o(1) for all z ∈ Z. Here, we do not consider that both
distributions are fixed but rather consider that this is only the case for P0 and that P1

converges towards P0. Although not realistic from a cryptographic point of view, this
approach allows to obtain results which are mathematically sound, and that can lead
to good approximates in practical situations.

Lemma 6.5 Let P0 and P1 be two distributions of support Z such that P1 tends towards
the fixed distribution P0. Let q be the number of queries available to the best distinguisher
A?

q between P0 and P1. We have

C(P0, P1) =
1

8 ln 2

∑

z∈Z
P0[z]ε2z + o

(‖ε‖22
)

where for all z ∈ Z we define

εz =
P1[z]− P0[z]

P0[z]
and ε = (εz)z∈Z .

Proof. We let

F(λ, x) =
∑

z∈Z
P0[z](1 + εz)λ and g(λ, x) =

∑

z∈Z
P0[z](1 + εz)λ ln(1 + εz)
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so that C(P0, P1) = −min0≤λ≤1 log F(λ, ε) = − log F(λ?, ε) and g(λ?, ε) = 0 (since
∂F
∂λ (λ, ε) = g(λ, ε)). We will approximate F(λ?, ε) when ε is small and subject to∑

z P0[z]εz = 0. We first have

g(λ, ε) =
∑

z

P0[z](1 + λεz + o(εz))
(

εz − ε2z
2

+ o(ε2z)
)

=
∑

z

P0[z]
(

λ− 1
2

)
ε2z + o

(‖ε‖22
)

since
∑

z P0[z]εz is zero. As g(λ∗, ε) = 0 we deduce that λ∗ tends towards 1
2 as ε tends

towards 0. Taylor’s theorem used with Lagrange’s form of the remainder gives

F(λ∗, ε) = F
(

1
2
, ε

)
+

(
λ∗ − 1

2

)
∂F
∂λ

(
1
2
, ε

)
+

1
2

(
λ∗ − 1

2

)2

R

with |R| ≤ maxλ
∂2F
∂λ2 (λ, ε) for λ ∈ [0, 1]. As ∂F

∂λ (λ, ε) = g(λ, ε), previous computations
immediately lead to ∂F

∂λ (1
2 , ε) = g(1

2 , ε) = o(‖ε‖22). Similarly we have

∂2F
∂λ2

(λ, ε) =
∑

z∈Z
P0[z](1 + εz)λ (ln(1 + εz))

2

=
∑

z∈Z
P0[z](1 + o(1)) (εz + o(εz))

2

=
∑

z∈Z
P0[z]ε2z + o(‖ε‖2)

which is a O(‖ε‖2), hence

F(λ∗, ε) = F
(

1
2
, ε

)
+ o(‖ε‖2) +

1
2

(
λ∗ − 1

2

)2

O(‖ε‖2).

Since λ∗ − 1
2 = o(1) the previous equation can be reduced to

F(λ∗, ε) = F
(

1
2
, ε

)
+ o(‖ε‖2).

Now, we have

F
(

1
2
, ε

)
=

∑

z∈Z
P0[z]

√
1 + εz

=
∑

z∈Z
P0[z]

(
1 +

1
2
εz − 1

8
ε2z + o(ε2z)

)

= 1− 1
8

∑

z∈Z
P0[z]ε2z + o(‖ε‖22)
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and therefore
F(λ∗, x) = 1− 1

8

∑

z∈Z
P0[z]ε2z + o(‖ε‖22).

Since C(P0, P1) = − log F(λ?, ε) this immediately leads to

C(P0, P1) =
1

8 ln 2

∑

z∈Z
P0[z]ε2z + o(‖ε‖22).

Based on Corollary 6.1, it is tempting in practice to make the following heuris-
tic assumption.

Heuristic 6.1 Let P0 and P1 be two probability distributions of finite support with
union Z and intersection Z ′. Let

C(P0,P1) = − inf
0<λ<1

log
∑

z∈Z′
P0[z]1−λP1[z]λ

be the Chernoff information between P0 and P1. The best q-limited distinguisher be-
tween P0 and P1 reaches a non-negligible advantage when

q =
1

C(P0,P1)
.

One can note that all the examples of Section 6.5 are in favor of the previous
heuristic, since for all of them we have BestAdvq(P0, P1) = 1 − 2−qC(P0,P1). Taking
q = 1/C(P0, P1) would lead to an advantage equal to 1

2 (in those specific cases). In
practice though, it might be more comfortable to work with the approximation of the
Chernoff information that we obtained in Lemma 6.5 than with the Chernoff information
itself.

Heuristic 6.2 Let P0 and P1 be two distributions of support Z and let ε = (εz)z∈Z be
such that εz = P1[z]−P0[z]

P0[z] for all z ∈ Z. Assuming that ‖ε‖22 ¿ 1, the best q-limited
distinguisher reaches a non-negligible advantage when

q =
8 ln 2∑

z∈Z P0[z]ε2z
.

Whereas we cannot formally justify Heuristic 6.1, we can easily show that if it
holds then Heuristic 6.2 does also. For this we use the following result.

Lemma 6.6 Let P0 and P1 be two distributions of support Z. For all z ∈ Z we define

εz =
P1[z]− P0[z]

P0[z]
and ε = (εz)z∈Z .
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Letting B(P0, P1) = − log
∑

z

√
P0[z]P1[z] we have C(P0, P1) ≥ B(P0, P1) and, assuming

that ‖ε‖∞ ≤ 1
2 ,

∣∣∣∣∣B(P0, P1)− 1
8 ln 2

∑

z∈Z

P0[z]ε2z

∣∣∣∣∣ ≤
√
|Z|

8 ln 2
‖P0‖∞‖ε‖32 +

5
96 ln 2

‖P0‖2∞‖ε‖42. (6.7)

Proof. The fact that B(P0, P1) ≤ C(P0, P1) is trivial. The rest is proved in Appendix B.

We see that if Heuristic 6.1 holds, then

q =
1

B(P0, P1)

samples are obviously sufficient to distinguish P0 from P1 since B(P0, P1) ≤ C(P0, P1).
In that case it is easy to check whether the approximation

B(P0, P1) ≈ 1
8 ln 2

∑

z∈Z

(P1[z]− P0[z])2

P0[z]

is acceptable by showing that the right-hand side of (6.7) is negligible. If it is so, then
we can assume that Heuristic 6.2 is correct.

6.7 The Best Distinguisher: Case where one of the Distri-

butions is Uniform

In this section, we assume that P0 is the uniform distribution. This situation
is quite typical when studying certain cryptographic devices, like for example pseudo-
random generators which should generate a sequence of symbols indistinguishable from
a uniformly distributed random string. To simplify the notations, we let U = P0 denote
the uniform distribution and P = P1 be the biased distribution of full support.

Definition 6.10 Let P be an arbitrary distribution over a finite set Z, let δz = P[z]− 1
|Z| ,

and let εz = |Z| δz for all z ∈ Z. The Squared Euclidean Imbalance3 (SEI) ∆(P) of the
distribution P is defined by

∆(P) = |Z|
∑

z∈Z
δ2
z =

1
|Z|

∑

z∈Z
ε2z = |Z| ‖P− U‖22.

3Although this appellation coincides with the one of Harpes, Kramer, and Massey in [65], note that
the definitions slightly differ.
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Using this notation, we can re-write Lemma 6.6 as follows.

Lemma 6.7 Let P be a probability distribution over a finite set Z and let B(U, P) =
− log

(
|Z|−1/2 ∑

z∈Z
√

P[z]
)
. Assuming that ‖P− U‖∞ ≤ 1

2|Z| , we have

∣∣∣∣B(U, P)− ∆(P)
8 ln 2

∣∣∣∣ ≤
|Z|

8 ln 2
∆(P)3/2 +

5
96 ln 2

∆(P)2.

This result validates the rule of thumb that states that in order to reach a non-
negligible advantage, the best distinguisher between P and U needs a sample of size at
least 1/∆(P). In particular, assuming that Heuristic 6.1 is correct and that P is close
enough to the uniform distribution, it tells us that the number of samples required by
the best distinguisher in order to reach an advantage close to 1

2 is 8 ln 2
∆(P) . If we consider,

for example, the particular case where Z = {0, 1} and denote ε = ε0 = −ε1, this rule of
thumb leads to the conclusion that the sample size should be close to 8/ε2. This result
is very similar to classical results coming from linear cryptanalysis [110].

6.8 The Best Distinguisher: Case where one Hypothesis is

Composite

So far, we considered the problem of testing the null hypothesis H0 : P =
P0 against the simple alternate hypothesis H1 : P = P1 where P0 and P1 were fully
specified. This situation is usually referred to as the simple hypothesis testing problem.
A more complex situation arises when one of the two hypotheses is composite, i.e.,
when the distribution might belong to a set of distributions. In this subsection, we
will consider the latter situation and extend the results to the case where H0 is still
simple (H0 : P = P0) but where H1 is composite (H1 : P ∈ D, where D = {P1, . . . , Pd}).
Under H1 we assume that the selection of Pi is taken with an a priori weight of πi to
define the advantage for distinguishing H0 from H1. For simplicity we assume that all
distributions have the same support Z.

Theorem 6.4 Let P0 be a distribution of support Z and D = {P1, . . . ,Pd} be a finite
set of distributions of support Z. Let H0 : P = P0 be the null hypothesis and H1 : P ∈ D
be the alternate hypothesis, in which Pi is chosen with an a priori weight of πi. The q-
limited distinguisher A?

q between H0 and H1 defined by the distribution acceptance region
Π?

q = Π? ∩ Pq, where

Π? =
{

P ∈ P : min
1≤i≤d

Li(P) ≤ 0
}

with Li(P) =
∑

z∈Z
P[z] log

P0[z]
Pi[z]
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is asymptotically optimal and its advantage BestAdvq is such that

1− BestAdvq(H0, H1)
.= max

1≤i≤d
2−qC(P0,Pi).

Proof. Letting Πi = {P ∈ P : Li(P) ≤ 0} for all i = 1, . . . , d, we have that Π? =
Π1 ∪Π2 ∪ · · · ∪Πd. Since we know from the proof of Theorem 6.2 that the Πi’s verifies
Sanov’s theorem hypotheses, it is also the case for Π?. Therefore, from Theorem 6.1 we
get

PrH0 [A
?
q(Z

q) = 1] .= 2−qD(Π?‖P0).

By definition

D(Π?‖P0) = min
P∈Π1∪···∪Πd

D(P‖P0) = min
1≤i≤d

min
P∈Πi

D(P‖P0) = min
1≤i≤d

D(Πi‖P0).

Since we know from the proof of Theorem 6.2 that D(Πi‖P0) = C(P0,Pi), we deduce

PrH0 [A
?
q(Z

q) = 1] .= max
1≤i≤d

2−qC(P0,Pi). (6.8)

On the other hand, we have

PrH1 [A
?
q(Z

q) = 0] = PrH1 [PZq /∈ Π1, . . . , PZq /∈ Πd] ≤ PrH1 [PZq /∈ Π1]

and we know that PrH1 [PZq /∈ Π1]
.= 2−qC(P0,P1). Since this is clearly less than

max1≤i≤d 2−qC(P0,Pi), we conclude from this and (6.8) that

1− BestAdvq(H0, H1)
.= max

1≤i≤d
2−qC(P0,Pi).

We will now show that this advantage is asymptotically optimal.
Let Aq be an arbitrary q-limited distinguisher between H0 and H1 defined by

an acceptance region Π, and let Advq denote its advantage. We have

1−Advq(H0, H1) = PrH0 [Aq(Zq) = 1] + PrH1 [Aq(Zq) = 0]

= PrH0 [Aq(Zq) = 1] +
d∑

i=1

πiPr[Aq(Zq) = 0|P = Pi]

=
d∑

i=1

πi(PrH0 [Aq(Zq) = 1] + Pr[Aq(Zq) = 0|P = Pi])

≥
d∑

i=1

πi(1− BestAdvq(P0, Pi)),

where BestAdvq(P0, Pi) denotes the advantage of the best distinguisher between P0 and
Pi. Since, according to Corollary 6.1,

1− BestAdvq(P0, Pi)
.= 2−qC(P0,Pi)
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then from Lemma 5.1 we deduce that

d∑

i=1

πi(1− BestAdvq(P0, Pi))
.= 2−q min1≤i≤d C(P0,Pi) = max

1≤i≤d
2−qC(P0,Pi),

which allows to conclude that 1−Advq(H0, H1) ≥ cq where cq
.= 1−BestAdvq(H0, H1).

We will use Theorem 6.4 in Section 7.6 to compute the asymptotic value of
a generalized version of the best linear distinguisher. In the meantime, we can deduce
the following heuristic result.

Heuristic 6.3 Let P0 be a distribution of support Z and D = {P1, . . . , Pd} be a finite
set of distributions of support Z. Let

C(P0, Pi) = − inf
0<λ<1

log
∑

z∈Z
P0[z]1−λPi[z]λ

be the Chernoff information between P0 and Pi, for i = 1, 2, . . . , d. The best q-limited
distinguisher between H0 : P = P0 and H1 : P ∈ D reaches a non-negligible advantage
when

q =
1

min
1≤i≤d

C(P0, Pi)
.

When P0 is uniform, then the best q-limited distinguisher between the two previous
hypotheses reaches a non-negligible advantage when

q =
8 ln 2

min
1≤i≤d

∆(Pi)
.

6.9 A General Heuristic Method to Compute the Advantage

of an Arbitrary Distinguisher

In the previous sections, we focused on the best distinguisher (either asymp-
totic or not) and derived its advantage using, essentially, Sanov’s theorem (Theo-
rem 6.1). We can learn from the techniques we used and extract a general heuris-
tic method that can be applied to compute the advantage of (almost) any q-limited
distinguisher Aq between two simple hypotheses.

We assume that Aq is defined by an acceptance region

Π = {P ∈ P : L(P) ≤ 0}
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where L is some continuous function, and that both Π and its complement satisfy
Sanov’s theorem hypotheses. This is notably the case of any non-empty convex set. We
also assume that the distributions we are considering are close to each other.

Since Π satisfies Sanov’s theorem hypotheses, we know that

PrH0 [Aq(Zq) = 1] .= 2−qD(Π‖P0), (6.9)

so that all we need to do is to approximate D(Π‖P0) = minP∈Π D(P‖P0). Similarly to
what we had in the proof of Theorem 6.2 we know that (according to the method of
Lagrange multipliers) the minimum can only be achieved for a distribution P such that

∇D(P‖P0) = λ∇L(P ) + µ∇N(P )

for some λ and µ, where N(P ) =
∑

z∈Z P [z], under the constraint that L(P ) = 0 and
that N(P ) = 1.

For any distribution P converging towards P0 as q →∞, we have

D(P‖P0) =
∑

z∈Z
P [z] log

P [z]
P0[z]

=
1

2 ln 2

∑

z∈Z

(P [z]− P0[z])2

P0[z]
+ o

(∑

z∈Z

(P [z]− P0[z])2

P0[z]

)
.

When P is fixed but close to P0, we can approximate D(P‖P0) by the first term of the
right-hand side of the previous equation and deduce that

∂D(P‖P0)
∂P [a]

≈ P [a]− P0[a]
P0[a] ln 2

for all a ∈ Z. We deduce that the distribution P for which D(P‖P0) is minimal satisfies

P [a]− P0[a]
P0[a] ln 2

≈ λ
∂L(P )
∂P [a]

+ µ

from which we deduce that P [a]−P0[a] = λP0[a] ln 2∂L(P )
∂P [a] + µP0[a] ln 2. Summing over

a ∈ Z leads to λ
∑

a P0[a]∂L(P )
∂P [a] + µ = 0, from which we deduce that the distribution P

for which D(P‖P0) is minimal must satisfy

L(P ) = 0 and
P [a]− P0[a]

P0[a] ln 2
≈ λ

∑

z∈Z
P0[z]

(
∂L

∂P [a]
− ∂L

∂P [z]

)
(6.10)

for some constant λ. Equation (6.10) leads to a system of equations with |Z| + 1
unknowns in total. Solving this system allows to estimate D(Π‖P0) and thus the error
probability PrH0 [Aq(Zq) = 1] by approximating the left-hand side of (6.9) by its right-
hand side.

The computation of D(Π‖P1) can be performed in a similar way and leads to
an approximation of the other error probability. Finally, the approximate value of the
advantage is easy to deduce from the previous computations.
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6.10 Case where One of the Distributions is Unknown: the

Squared Distinguishers Family

In order to implement the best distinguisher between H0 : P = P0 and H1 :
P = P1, the precise knowledge of both distributions is needed, since the likelihood ratio
depends on them. This is also the case for achieving the best asymptotic advantage
when testing a simple hypothesis against a composite one, as shown in Section 6.8.
Yet, this information might not be always available in practice (e.g., when attacking
a pseudo-random generator which specifications are unknown). In this subsection, we
investigate what can be done in the situation where the distinguisher has only access
to one of the two distributions. In this case, the null hypothesis is H0 : P = P0 and
the alternate hypothesis is H1 : P 6= P0. We assume that the adversary has precise
knowledge of P0.

Definition 6.11 (χ2 statistics) Let P0 be a probability distribution over a finite set
Z. Let q be a positive integer. Pearson’s chi-square (χ2) statistic [129] is the function

Σχ2 : Zq −→ R

zq 7−→ Σχ2(zq) = q
∑

a∈Z

(Pzq [a]− P0[a])2

P0[a]
.

The logarithmic likelihood ratio (G2) statistic is the function

ΣG2 : Zq −→ R
zq 7−→ ΣG2(zq) = 2q

∑
a∈Z Pzq [a] ln Pzq [a]

P0[a] .

The Freeman-Tukey (T 2) statistic [52] is the function

ΣT 2 : Zq −→ R

zq 7−→ ΣT 2(zq) = 4q
∑

a∈Z

(√
Pzq [a]−

√
P0[a]

)2
.

The Neyman modified chi-square (NM2) statistic is the function

ΣNM2 : Zq −→ R

zq 7−→ qΣNM2(zq) = q
∑

a∈Z

(Pzq [a]− qP0[a])2

Pzq [a]
.

The modified logarithmic likelihood ratio (GM2) statistic is the function

ΣGM2 : Zq −→ R
zq 7−→ ΣG2(zq) = 2q

∑
a∈Z P0[a] ln Pzq [a]

P0[a] .

Let X ∈ {χ, G, T,NM,GM}. A q-limited distinguisher PX2

q (T ) defined by the sample
acceptance region

AX2

q (T ) = {zq ∈ Zq : ΣX2(zq) > qT}
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is a distinguisher performing a X2 statistical test with threshold T .

Intuitively, if the null hypothesis is true, the value of each of these X2 statistical
tests ΣX2 should be small since the experimental frequencies should be close to the
expected ones, so that Pzq [a] − P0[a] should be close to 0 for all a ∈ Z. In the simple
situation where only two distributions are possible, larger values of the tests allow one
to conclude that the source follows P1.

Presumably because of its simplicity, the Pearson’s chi-square (χ2) statis-
tic [129] is the most commonly used. According to Horn [68], the reason why the G2

was not as used as the χ2 in the past may lie in the difficulty of undertaking logarithmic
computations. Modern computers obviously erased this drawback.

In what follows, we recall the proof of Cressie and Read [39] who show that
all the X2 tests introduced in Definition 6.11 are asymptotically equivalent. As a
consequence, all the distinguishers performing a X2 statistical test are equivalent from
the point of view of the advantage when q is large enough. We will thus focus on the
test which makes it possible to easily compute the advantage using Theorem 6.1, in a
similar way than what we did for the best distinguisher in Theorem 6.2.

All the X2 Tests Asymptotically Follow a χ2 Distribution.

We first introduce Cressie and Read λ power statistic and show that it actually
encompass all the X2 tests introduced so far.

Definition 6.12 Let P0 be a probability distribution over a finite set Z. Let q be a
positive integer and let λ ∈ R. For λ 6= 0,−1, the CRλ power statistic is the function

ΣCRλ : Zq −→ R

zq 7−→ ΣCRλ(zq) =
1

λ(λ + 1)

∑

a∈Z
Pzq [a]

((
Pzq [a]
P0[a]

)λ

− 1

)
.

For λ = 0 and λ = −1, ΣCRλ is defined by continuity:

ΣCR0(zq) =
∑

a∈Z
Pzq [a] ln

Pzq [a]
P0[a]

and ΣCR−1(zq) =
∑

a∈Z
P0[a] ln

P0[a]
Pzq [a]

.

Lemma 6.8 Under the notations of definitions 6.11 and 6.12, we have:

Σχ2(zq) = 2qΣCR1(zq),
ΣG2(zq) = 2qΣCR0(zq),
ΣT 2(zq) = 2qΣCR−1/2(zq),

ΣNM2(zq) = 2qΣCR−2(zq)
ΣGM2(zq) = 2qΣCR−1(zq)
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We will now show that all the CRλ tests are asymptotically equivalent, which
obviously implies the same for the X2 tests.

Lemma 6.9 Let P0 be a probability distribution over a finite set Z and λ ∈ R. Let
z1, z2, . . . , zq ∈ Z be a sequence of q elements. Let

εa =
Pzq [a]− P0[a]

P0[a]

for all a ∈ Z. Under the null hypothesis, we have εa → 0 when q → ∞ for all a ∈ Z
and

ΣCRλ(zq) =
1
2

∑

a∈Z
P0[a](ε2a + o(ε2a)).

Proof. For λ 6= 0,−1 it is easy to show that

ΣCRλ(zq) =
1

λ(λ + 1)

∑

a∈Z
P0[a]

(
(1 + εa)λ+1 − (1 + εa)

)
.

Since
(1 + εa)λ+1 − (1 + εa) = λεa +

λ(λ + 1)
2

ε2a + o(εa)

and since
∑

a P0[a]εa = 0 we obtain the announced result for λ 6= 0,−1. Similarly it
can be shown that

ΣCR0(zq) =
∑

a∈Z
P0[a](1 + εa) ln(1 + εa),

which leads to the announced result for λ = 0 using the fact that

(1 + εa) ln(1 + εa) = εa +
1
2
ε2a + o(ε2a).

For λ = −1 we have
ΣCR−1(zq) = −

∑

a∈Z
P0[a] ln(1 + εa)

and
− ln(1 + εa) = −εa +

1
2
ε2a + o(ε2a)

which completes the proof.

As a consequence of lemmas 6.8 and 6.9, we have that for all λ ∈ R,

2qΣCRλ(zq) ∼ 2qΣCR1(zq) = Σχ2(zq)

as q →∞. It is well known that under the null hypothesis (i.e., when the distribution
followed by the source if P0) Pearson’s χ2 statistical test converges towards a χ2 dis-
tribution with |Z| − 1 degrees of freedom [15, 70, 98]. We have just shown that this is
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consequently the case for all the tests introduced in this section. Since we don’t assume
anything about the alternate case, this also mean that all the distinguishers based on
these respective tests are a priori equivalent in terms of advantage when q becomes
large. In what follows, we focus on the G2 test and compute the advantage of AG2

q (T ).

Computing the Advantage of a G2 Distinguisher

We first note that the G2 statistic can be expressed in terms of the relative
entropy between the type of zq and the distribution P0 as

ΣG2(zq) = 2q
∑

a∈Z
P0[a] ln

Pzq [a]
P0[a]

= 2 ln(2)qD(Pzq‖P0).

The sample acceptance region of a G2 distinguisher is

AG2

q (T ) = {zq ∈ Zq : ΣG2(zq) > qT} = {zq ∈ Zq : D(Pzq‖P0) > T ′},

where T ′ = T/(2 ln 2). Thus, exchanging T by T ′ in Definition 6.11 only “shifts” the
advantage of the distinguishers. For simplicity, we adopt from now on the following
definition for a G2 distinguisher.

Definition 6.13 Let P0 be a probability distribution over a finite set Z and let

ΠG2
(T ) = {P ∈ P : D(P‖P0) > T}.

The q-limited distinguisher AG2

q (T ) defined by the type acceptance region ΠG2

q (T ) =
ΠG2

(T ) ∩ Pq is a G2 distinguisher with threshold T .

From Proposition 6.4, we note that the type acceptance region of a G2 distin-
guisher corresponds to the one of the perfect distinguisher, except that the D(P‖P1)
term is now replaced by a constant T .

The following heuristic theorem describes the asymptotic behavior of a distin-
guisher AG2

q in a simplified situation where the alternate hypothesis is simple, H1 : P =
P1 (where P1 is close to P0), but where P1 is unknown to the distinguisher.

Theorem 6.5 Let P0 and P1 be two probability distributions of full support over a finite
set Z. For all z ∈ Z let

P0[z] = pz, P1[z] = pz + δz and εz =
δz

pz
.

Let 0 < T < maxz log 1
P0[z] . Restricting Taylor series expansion in terms of the εz’s

to order 2, the advantage of a q-limited G2 distinguisher with threshold T between H0 :
P = P0 and H1 : P = P1 (P1 being unknown to the distinguisher) is such that

1−AdvG2

q (H0,H1)
.= 2−q min(T,(

√
T−√ρ)2), (6.11)
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where
ρ =

1
2

∑

z∈Z
pzε

2
z.

Proof. Let L(P) = T − D(P‖P0). According to Definition 6.13, the type acceptance
region of AG2

q (T ) is ΠG2

q (T ) = ΠG2
(T ) ∩ Pq where

ΠG2
(T ) = {P ∈ P : D(P‖P0) > T}.

Clearly ΠG2
(T ) is not empty since the distribution P which is always zero except at

the point which minimizes P0 belongs to ΠG2
(T ) since D(P‖P0) = log 1

minz P0[z] =

maxz log 1
P0[z] > T by assumption. On the other hand, ΠG2

(T )c is non-empty either
since P0 belongs to it. The continuity of L ensures that the hypotheses of Sanov’s
theorem (Theorem 6.1) are verified, and thus we get

1−AdvG2

q (T ) .= 2q min(D(ΠG2
(T )‖P0),D(ΠG2

(T )c‖P1)).

By definition we easily obtain that

D(ΠG2
(T )‖P0) = inf

P∈ΠG2 (T )
D(P‖P0) = T.

Computing D(ΠG2
(T )‖P1) is more involving. For similar reasons than those we had

in the proof of Theorem 6.2, this computation reduces to an optimization problem in
which we must minimize P 7→ D(P‖P1) under the constraints that L(P) = 0 and that
N(P) =

∑
z∈Z P[z] = 1. According to the method of Lagrange’s multipliers, a minimum

can only be obtained in a point P such that

∇D(P‖P1) = λ∇L(P) + µ∇N(P)

for some λ, µ ∈ R. Solving the previous equation under the two constraints leads to a
solution of the form

P[a] =
P1[a]

1
1+λ P0[a]

λ
1+λ

∑
b P1[b]

1
1+λ P0[b]

λ
1+λ

=
P0[a]

(
P1[a]
P0[a]

)µ

∑
b P0[b]

(
P1[b]
P0[b]

)µ ,

where µ = 1/(1 + λ). Introducing the notations of the theorem, the previous equation
becomes

P[a] =
pa (1 + εa)

µ

∑
b pb (1 + εb)

µ . (6.12)

From the expression obtained for P[a], we can compute D(P‖P0):

D(P‖P0) =
∑

a

pa (1 + εa)
µ

∑
b pb (1 + εb)

µ log
(

(1 + εa)
µ

∑
b pb (1 + εb)

µ

)

=
µ

∑
a pa (1 + εa)

µ log(1 + εa)∑
b pb (1 + εb)

µ − log

(∑
a

pa (1 + εa)
µ

)
.
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Developing the last equation using Taylor series, we obtain at order 2

D(P‖P0) ≈ 1
2
µ2

∑
a

paε
2
a,

so that the condition D(P‖P0) = T gives µ ≈
√

T/ρ using the notations of the theorem.
Similarly, we have

D(P‖P1) =
∑

a

pa(1 + εa)µ

∑
b pb(1 + εb)µ

log
(1 + εa)µ−1

∑
b pb(1 + εb)µ

=
(µ− 1)

∑
a pa(1 + εa)µ log(1 + εa)∑

b pb(1 + εb)µ
− log

(∑

b

pb(1 + εb)µ

)
.

Developing the last equation in Taylor series again, we get

D(P‖P1) ≈ (µ− 1)2

2

∑
a

paε
2
a.

Since µ ≈
√

T/ρ we finally obtain

D(P‖P1) ≈ (
√

T/ρ− 1)2ρ = (
√

T −√ρ)2.

On the contrary of Theorem 6.2 which gives an rigorous expression of the
advantage of the best distinguisher, Theorem 6.5 is only heuristic in the sense that
we assume that the approximation of ρ obtained using Taylor series can be used in
place of its exact value. Assuming that the advantage of the G2 distinguisher can be
approximated by its asymptotic value, we can compare its efficiency with respect to
that of the best distinguisher. According to Heuristic 6.2 we can assume that the best
distinguisher reaches a non-negligible advantage when

qbest =
8 ln 2∑

z∈Z P0[z]ε2z
.

From Theorem 6.5, we can similarly assume that

qχ2 =
1

min(T, (
√

T −√ρ)2)

are sufficient to the G2 distinguisher to distinguish H0 from H1. This value is minimized
by choosing T = 1

4ρ. In the best case from the point of view of the distinguisher, the
previous equation thus reads

qχ2 =
8∑

z∈Z P0[z]ε2z
,
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which is of the same order of magnitude as qbest.
Obviously, the optimal choice of the threshold cannot always been made in

practice since we assumed that the distribution P1 is unknown. Yet, if at least the
“distance” between P0 and P1 can be evaluated, then it not necessary to know the
exact details of P1 in order to obtain an efficient G2 distinguisher. In that case, a G2

distinguisher with an optimal threshold behaves just as well as the best distinguisher.
This confirms previous results of Vaudenay [151], who obtained the same conclusions
but under stronger assumptions on the sample distribution and considering an simpler
way of measuring the efficiency of a distinguisher instead of the classical notion of
advantage.

Non-asymptotic case: The best χ2-like Test in Practice

The results presented so far are asymptotic. Whereas we considered that all
χ2-like tests are equivalent (as they all follow a χ2 distribution with ν = |Z|−1 degrees
of freedom as q →∞), some of them might be more accurate than others in practice (for
bounded values of q), namely, those that converge faster to the asymptotic distribution.
To find out which of these tests is best, we compare the mean of the statistic to that
of the asymptotic distribution, and choose the value of λ for which the convergence is
the fastest possible.

Proposition 6.5 Let Z be a finite set, P0 be a probability distribution over Z, and
Z1, Z2, . . . , Zq ∼ P0 be i.i.d. random variables. Let

pa = P0[a], δa = PZq [a]− P0[a], and εa =
δa

pa

for all a ∈ Z. Letting S =
∑

a
1
pa

we have

E
(
2qΣCRλ(zq)

)
= |Z| − 1 +

1
q

(
(λ− 1)

3
(S − 3 |Z|+ 2)

+
(λ− 1)(λ− 2)

4
(S − 2 |Z|+ 1)

)
+ o(q−3/2).

Proof. Since

εa

1/q
= qεa =

qδa

pa
=

q(PZq [a]− P0[a])
pa

=
(N[a|Zq]− qP0[a])

pa
,

the law of large numbers guarantees that, under the null hypothesis, εa
1/q → 0 as q →∞

with probability 1. Therefore, εa = o(1/q) for all a ∈ Z with probability 1. With these
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notations, we have

2qΣCRλ(Zq)

=
2q

λ(λ + 1)

∑

a∈Z
pa(1 + εa)

(
(1 + εa)

λ − 1
)

= q
∑

a∈Z
pa

(
λεa + ε2a +

(λ− 1)
3

ε3a +
(λ− 1)(λ− 2)

12
ε4a

)
+ o(1/q3)

=
∑

a∈Z

(
qpaε

2
a +

(λ− 1)
3

qpaε
3
a +

(λ− 1)(λ− 2)
12

qpaε
4
a

)
+ o(1/q3).

It can be shown that

E(N[a|Zq]) = E

(∑

i

1Zi=a

)
=

∑

i

E (1Zi=a) = qpa,

E(N[a|Zq]2) =
∑

i,j

E
(
1Zi=a1Zj=a

)
=

∑

i

pa +
∑

i,j 6=i

p2
a = qpa + q(q − 1)p2

a,

E(N[a|Zq]3) =
∑

i,j,k

E
(
1Zi=a1Zj=a1Zk=a

)

= qpa + 3q(q − 1)p2
a + q(q − 1)(q − 2)p3

a,

E(N[a|Zq]4) =
∑

i,j,k,`

E
(
1Zi=a1Zj=a1Zk=a1Z`=a

)

= qpa+7q(q − 1)p2
a + 6q(q − 1)(q − 2)p3

a + q(q − 1)(q − 2)(q − 3)p4
a.

qE(PZq [a]) = qpa,

qE(PZq [a]2)
pa

= 1 + (q − 1) pa,

qE(PZq [a]3)
p2

a

=
1

qpa
+ 3− 3

q
+

(
q − 3 +

2
q

)
pa,

qE(PZq [a]4)
p3

a

=
7

qpa
+ 6− 18

q
+

(
q − 6 +

11
q

)
pa + o(q−3/2).

From the previous equations, we compute respective the values of qpaE(ε2a), qpaE(ε3a),
and qpaE(ε4a) and obtain

qpaE(ε2a) = 1− pa,

qpaE(ε3a) =
1
q

(
1
pa
− 3 + 2pa

)
,

qpaE(ε4a) =
3
q

(
1
pa
− 2 + pa

)
+ o(q−3/2).
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Plugging these three values in the expression of E(2qΣCRλ(Zq)) we get the announced
result.

Since the mean of a χ2 distribution with ν = |Z| − 1 degrees of freedom is
ν = |Z| − 1, we see that the best χ2-like test (in general) is the one such that

(λ− 1)
3

(S − 3 |Z|+ 2) +
(λ− 1)(λ− 2)

4
(S − 2 |Z|+ 1)

is zero, which is obviously the case for λ = 1, the second root depending on the values of
S and |Z|. Of course, in certain particular situations, another test might just behave as
well. For example, in the particular case where S−3 |Z|+2 = 0, the test corresponding
to λ = 2 appears to be just as good with respect to the speed at which the mean tends
towards that of the asymptotic distribution. Applying the same approach than the one
proposed here (and using moments of higher order), Cressie and Read concluded in [39]
that the value λ = 2

3 leads to particularly good results in practice (for certain fixed
values of S and |Z|). Using Lemma 6.8 we conclude as follows.

Proposition 6.6 In the general case, the best χ2-like statistical test among the family of
tests included in the CRλ power statistics is the one such that λ = 1, that is, Pearson’s
chi-square (χ2) statistic.
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Projection-Based Distinguishers Between two Sources

7.1 On the Need for New Distinguishers

In the general case, the memory requirement of a distinguisher between two
probability distributions on a set Z is, roughly, the sum of a quantity proportional
to q log |Z| (in order to store the q samples sent by the source) and of a quantity
proportional to |Z| (in order to store the descriptions of both P0 and P1). In the case
of the best distinguisher, this requirements drops down to O(|Z|) when implementing
it as described in Algorithm 7.1. In this case, one essentially only needs to store the
description of both probability distributions, so that the memory requirement of the
best distinguisher is proportional to |Z|. We also note that since both LR(zq) and
LLR(zq) are computed for occurring zq, the NaN case cannot occur.

The memory requirement of the χ2 distinguisher is essentially the same, since
one needs to store |Z| counters to compute the chi-square test of the q samples.

However, the cardinality of Z might be large in practice so that very often
neither the best distinguisher nor the χ2 distinguisher can be implemented. This is the
case for example when considering modern block ciphers, which typically output 128
bit strings. Since we have |Z| = 2256 in this case (see Section 8.1), implementing the

Storage: Two probability distributions P0 and P1 over a finite set Z, a counter
llr ∈ R ∪ {−∞, +∞}.

llr← 01:

for i = 0, . . . , q do2:

Receive zi ∈ Z from the source S3:

llr← llr + log P0[zi]− log P1[zi]4:

end5:

if llr ≤ 0 then return 1 else return 06:

Algorithm 7.1: Implementing the best q-limited distinguisher A?
q between two

probability distributions P0 and P1 over a finite set Z.

– 67 –



Chapter 7 Projection-Based Distinguishers Between two Sources

distinguishers presented in Chapter 6 is inconceivable.

7.2 Best Distinguisher made Practical Using Compression

We consider the same game than in Chapter 6, except that we assume now
that the cardinality of the set from which the samples are drawn is large, so that none
of the previous distinguishers can be implemented directly. From now on, we denote by
L this set of large cardinality. In the simple hypothesis case, we denote by P̃0 and P̃1

the two possible distributions that the source can follow. To deal with this situation, a
possible solution is to reduce the samples’ size by means of a projection [7, 151,163]

h : L −→ Z,

where Z is a finite set of “reasonable” cardinality. If L ∈ L is a random variable of
distribution P̃i, this projection defines a random variable Z = h(L) of distribution Pi,
with i ∈ {0, 1}.

It is usually convenient to restrict to balanced projection as a uniform distri-
bution on L leads to a uniform distribution on Z in this case.

Definition 7.1 Let L and Z be two finite sets such that |Z| divides |L|. A function
h : L −→ Z is said to be balanced if, for all z ∈ Z, the subset h−1(z) ⊂ L of all
preimages of z by h is such that

∣∣h−1(z)
∣∣ =
|L|
|Z| .

We call projection-based distinguishers the class of distinguishers (see Defini-
tion 6.1) that reduce the sample space using a projection before trying to distinguish
an hypothesis from another.

Definition 7.2 Let Lq = L1, L2, . . . , Lq be q i.i.d. random variables sampled in a finite
set L according to a distribution P̃. Let Z be finite set such that |Z| ≤ |L|, let h : L → Z
and let Zi = h(Li) for i = 1, . . . , q. Let H0 and H1 be two incompatible hypotheses on P̃
such that one is true. A q-limited projection-based distinguisher SAq between H0 and
H1 is a q-limited distinguisher between H0 and H1 which takes Zq = Z1, Z2, . . . , Zq as
an input instead of Lq = L1, L2, . . . , Lq.

From this sole definition, both the perfect and the χ2 distinguishers of Chap-
ter 6 can be seen as particular projection-based distinguisher where the projection h
would simply be the identity. In what follows we consider the case where reducing
the sample space by a large factor is necessary to implement the best distinguisher,
i.e., that |L| À |Z|. Algorithm 7.2 describes the game played by a generic projection-
based distinguisher (in the simple hypothesis case) that reduces the samples using a
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b
u←− {0, 1} /* Random choice between P̃0 and P̃1 */1:

view← {P̃0, P̃1}2:

A ← SAq(view) such that A ⊂ Zq3:

for i = 1, . . . , q do4:

Li

ePb←−− L5:

Zi = h(Li)6:

view← view ∪ {Zi}7:

end8:

b̂← SAq(view) /* b̂ = 1 when (Z1, . . . , Zq) ∈ A and 0 otherwise */9:

if b̂ = b then return 1 else return 010:

Algorithm 7.2: Game played by a q-limited projection-based distinguisher SAq,
using a balanced projection h : L → Z, between two probability distributions P̃0

and P̃1 over a finite set L.

projection h. Without anticipating too much, we can already give examples of typical
projection-based distinguishers:

• Linear Distinguisher: In the case where L = {0, 1}N (for some large N), one can
choose some nonzero mask a ∈ L and let h(L) = a•L, where • denotes the bit-wise
exclusive-or operation. In this case Z = {0, 1}.

• Extended Linear Distinguisher: Letting L = {0, 1}N again, a natural way to
extend linear distinguishers is to consider a projections h : L → Z where Z =
{0, 1}n for some small n, and such that h is GF(2) linear.

• Multiple Linear Distinguisher: A simple particular case of extended linear distin-
guisher arises when considering several linear projections h(i) : {0, 1}N → {0, 1}
for i = 1, . . . , n, and letting h(L) = (h1(L), . . . , hn(L)) ∈ {0, 1}n.

We study these examples in more details in the following sections. In all cases,
we assume that the sample space is reduced enough so that the best distinguisher can be
implemented on the Zi’s. Intuitively, one can only loose information by considering less
data and thus, a projection-based distinguisher cannot always perform as well as a well
chosen (standard) distinguisher. The following lemma shows that certain projection-
based distinguishers cannot behave as well as well-chosen standard distinguishers, since
projections reduce the Squared Euclidean Imbalance (SEI, see Definition 6.10), which
was shown in Section 6.7 to be a fundamental measure, inverse-proportional to the data
complexity of a distinguisher.

Lemma 7.1 (Projections reduce the SEI). Let L and Z be two finite sets such
that |Z| divides |L|. Let h : L → Z be a balanced function. Let P̃ be a probability
distribution of support L and let L ∈ L be a random variable following P̃. Let P denote
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the distribution of h(L) ∈ Z. We have

∆(P) ≤ ∆(P̃).

Proof. By definition

∆(P) = |Z|
∑

z∈Z

(
PreP[h(L) = z]− 1

|Z|
)2

.

Using the fact that h is balanced

PreP[h(L) = z]− 1
|Z| =

∑

`∈L
1h(`)=z

(
PreP[`]− 1

|L|
)

,

so that using Cauchy’s inequality (and a simple trick, which consists in distributing the
1h(`)=z term over both sums)

(
PreP[h(L) = z]− 1

|Z|
)2

≤ |L||Z|
∑

`∈L
1h(`)=z

(
PreP[`]− 1

|L|
)2

.

We conclude by summing over z ∈ Z.

7.3 Linear Distinguishers for Binary Sources

We assume in this subsection that the source is binary, i.e., that it generates
samples in L = {0, 1}N for some large positive integer N (e.g. N = 128). A linear
distinguisher is a projection-based distinguisher that applies to each sample L ∈ {0, 1}N
a projection

ha : L −→ Z = {0, 1}
L 7−→ h(L) = a • L,

where a ∈ L \ {0} is called a mask and where • denotes the bit-wise exclusive-or op-
eration. Clearly, ha is balanced. For simplicity, we restrict to the simple hypothesis
problem where one of the two distributions is uniform: we let P̃0 and P̃1 be two prob-
ability distributions over L, such that P̃0 is uniform, let P̃ be the sample distribution,
and consider the two hypotheses H0 : P̃ = P̃0 and H1 : P̃ = P̃1. When L ∼ P̃b, we denote
by Pb the distribution of the bit Z = ha(L), for b ∈ {0, 1}. Since ha is balanced, P0 is
uniform over Z = {0, 1}. It is well known that the data complexity of a linear distin-
guisher is roughly inverse-proportional to the linear probability of Z (as noted in [32],
using the notations of [112]), a fact that we now show to be a direct consequence from
previous results.

Definition 7.3 Let B ∈ {0, 1} be a random bit. The linear probability of B is denoted
LP(B) and is defined by

LP(B) = (2Pr[B = 0]− 1)2 = (Pr[B = 0]− Pr[B = 1])2 =
(
E

(
(−1)B

))2
.
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Let N be a positive integer and let L be a random binary variable in the set L = {0, 1}N .
Let a ∈ L \ {0}. The linear probability of L with respect to the mask a is the linear
probability of a • L = a1L1 ⊕ a2L2 ⊕ · · · ⊕ cNLN ∈ {0, 1}, i.e.,

LPa(L) = LP(a • L).

Let P̃ be a probability distribution over L. The linear probability of P̃ with respect to the
mask a is the linear probability (with respect to the same mask) of a random variable
following this distribution, i.e., if L ∼ P̃ then

LPa(P̃) = LPa(L).

We will now derive an expression of the advantage of a linear distinguisher
and then show that, when P̃1 is close to the uniform distribution P̃0, an approximation
to the first order allows to deduce that the data complexity is inverse-proportional to
the linear probability of the biased distribution P̃1. The following result is a direct
consequence of Corollary 6.1.

Corollary 7.1 Let N be a positive integer. Let P̃0 and P̃1 be two probability distributions
over the binary set L = {0, 1}N , where P̃0 is uniform. Let Z = {0, 1}, a ∈ L \ {0}, and
let ha : L → Z be the projection defined by ha(L) = a • L. For b ∈ {0, 1}, we denote by
Pb the distribution of h(L) where L ∼ P̃b. The advantage is such that

1−AdvLAq(P̃0, P̃1)
.= 2−qC(P0,P1). (7.1)

Proof. The result in the case where P0 = P1 is trivial. We assume now that P0 6= P1.
We denote by P̃ the distribution of the Li’s in L and by P the distribution of Zi’s in Z,
where Zi = h(Li), for i = 1, . . . , q. Since a 6= 0, ha is balanced so that P0 is uniform.
Since P0 6= P1, we have P̃ = P̃0 ⇔ P = P0 and P̃ = P̃1 ⇔ P = P1. Consequently,

1−AdvLAq(P̃0, P̃1) = PreP=eP0
[LAq(Zq) = 1] + PreP=eP1

[LAq(Zq) = 0]
= PrP=P0 [LAq(Zq) = 1] + PrP=P1 [LAq(Zq) = 0]
= 1− BestAdvq(P0, P1).

The result follows from Corollary 6.1.

Lemma 7.2 Let Z = {0, 1}. Under the assumptions of Lemma 6.5 and assuming that
P0 is uniform, we have

C(P0,P1) =
LP(P1)
8 ln 2

+ o (LP(P1)) .
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Proof. According to Lemma 6.5, C(P0, P1) = (ε20 + ε21)/(16 ln 2) + o(ε20 + ε21), where
εb = 2P1[b]−1. Obviously, LP(P1) = ε20 = ε21, which leads to the announced result.

From Corollary 7.1 and Lemma 7.2 we can easily deduce the well accepted fact
that the data complexity of a linear distinguisher is inverse-proportional to the linear
probability of the biased distribution. For this, we approximate the left-hand side of
(7.1) by its right-hand side and we further replace the Chernoff information between P0

and P1 by its first order approximation. This leads to the following heuristic.

Heuristic 7.1 Let N be a positive integer. Let P̃0 and P̃1 be two distributions of support
L = {0, 1}N , such that P̃0 is uniform. Let a ∈ L \ {0}. Assuming that LPa(P̃1) ¿ 1,
the q-limited linear distinguisher LAq between P̃0 and P̃1 based on the mask a reaches
a non-negligible advantage when

q =
8 ln 2

LPa(P̃1)
.

7.4 Links between Best, Projection-Based, and Linear Dis-

tinguishers for Binary Sources

In what follows, we introduce some tools that will facilitate the study of the
relations between the various types of distinguishers we have considered so far.

Definition 7.4 Let N be a positive integer. Let P̃ be an arbitrary distribution over the
set L = {0, 1}N and let ε` = P̃[`] − 1

|L| . The Fourier transform of P̃ at point u ∈ L is
defined as

ε̂u =
∑

`∈L
(−1)u•`ε`. (7.2)

Lemma 7.3 Under the notations of Definition 7.4 we have

ε` =
1

2N

∑

u∈L
(−1)u•`ε̂u. (7.3)
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Proof. Starting from the right hand side of (7.3) and plugging (7.2) in,

1
2N

∑

u∈L
(−1)u•`ε̂u =

1
2N

∑

u∈L
(−1)u•`

∑

`′∈L
(−1)u•`′ε`′

=
1

2N

∑

`′∈L
ε`′

∑

u∈L
(−1)u•(`⊕`′)

=
∑

`′∈L
ε`′1`=`′

= ε`.

The next proposition can be compared to Parseval’s Theorem and relates the
squared Euclidean Imbalance of a distribution (SEI, see Definition 6.10) to its Fourier
coefficients.

Proposition 7.1 Let P̃ be a probability distribution over a finite set L = {0, 1}N . The
SEI of P̃ is related to its Fourier coefficient by

∆(P̃) =
∑

u∈L
ε̂2u.

Proof. By definition we have

∑

u∈L
ε̂2u =

∑

u∈L

(∑

`∈L
(−1)u•`ε`

)(∑

`′∈L
(−1)u•`′ε`′

)

=
∑

`,`′∈L
ε`ε

′
`

∑

u∈L
(−1)u•(`⊕`′)

= 2N
∑

`,`′∈L
ε`ε

′
`1`=`′

= 2N
∑

`∈L
ε2`

= ∆(P̃).

The following proposition relates the squared Euclidean imbalance of a distri-
bution to its linear probability.

Proposition 7.2 Let N be a positive integer. Let P̃ be a probability distribution over
the set L = {0, 1}N . The squared Euclidean imbalance (SEI) of P̃ is related to its linear
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probabilities by:

∆(P̃) =
∑

a∈L\{0}
LPa(P̃).

Proof. From (7.2) we have

ε̂a =
∑

`∈L
(−1)a•`ε` =

∑

`∈L
(−1)a•`

(
P̃[`]− 1

|L|
)

= E
(
(−1)a•L)− 1a=0,

where L ∼ P̃. From Proposition 7.1 we obtain

∆(P̃) =
∑

a∈L
ε̃2a =

∑

a∈L

(
E

(
(−1)a•L)− 1u=0

)2
=

∑

a∈L\{0}

(
E

(
(−1)a•L))2

from which we easily conclude by considering Definition 7.3.

Corollary 7.2 Let N be a positive integer. Let P̃ be a probability distribution over the
set L = {0, 1}N . Letting

LPmax(P̃) = max
a∈L\{0}

LPa(P̃)

we have
∆(P̃) ≤ (2N − 1)LPmax(P̃).

Based on Heuristic 7.1, we know that the smallest data complexity achievable
by a linear distinguisher (with a non-negligible advantage) between the uniform distri-
bution P̃0 and a biased distribution P̃1 over L = {0, 1}N is of the order of magnitude
of

qlin =
8 ln 2

LPmax(P̃1)
.

From Heuristic 6.2 and Definition 6.10, this is also the case for the best distinguisher
limited to

qbest =
8 ln 2

∆(P̃1)
.

Consequently, Corollary 7.2 shows that the data complexity of the best distinguisher
between two distributions of random bit strings can decrease with a factor up to 2N

when compared to the best linear distinguisher, i.e.,

qbest ≥ qlin

2N − 1
.
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It is interesting to note that this bound is actually tight as the following example shows.

Example 7.1 Let 0 < γ < 1. We consider the distribution P̃1 defined over L = {0, 1}N
(for some large positive integer N) by

P̃1[`] =

{
1

2N +
(
1− 1

2N

)
γ if ` = 0,

1
2N − 1

2N γ otherwise.

For all a ∈ L \ {0} and L ∼ P̃1 we have

LPa(P̃1) =
(
E

(
(−1)a•L))2

=

(∑

`∈L
(−1)a•` P̃1[`]

)2

=


 1

2N
+

(
1− 1

2N

)
+

(
1

2N
− 1

2N
γ

) ∑

`∈L\{0}
(−1)a•`




2

= γ2.

On the other hand,

∆(P̃1) =
1

2N

(
(2N − 1)2γ2 + (2N − 1)γ2

)
=

(
2N − 1

)
γ2.

We see that in this example ∆(P̃1) = (2N − 1)LPa(P̃1).

A natural extension of linear distinguishers would be to consider a specific class
of projection-based distinguishers which reduce the sample space using a projection
h which is GF(2)-linear. We call these distinguishers extended linear distinguishers
and wonder about the complexity gap between classical linear distinguishers and their
extended versions. The following theorem proves that if a biased distribution cannot
be distinguished from a uniform one by means of a classical linear distinguisher, then
(to some extent) an extended linear distinguisher won’t succeed either.

Theorem 7.1 Let N and n be two positive integers such that N > n. Let P̃ be a
probability distribution over the set L = {0, 1}N . Let h : {0, 1}N → {0, 1}n be GF(2)-
linear projection. Let P denote the distribution of h(L) where L ∼ P̃. We have

∆(P) ≤ (2n − 1)LPmax(P̃).

Proof. Let L ∈ L be a random variable sampled according to the distribution P̃, so that
h(L) ∼ P. From Proposition 7.2,

∆(P) =
∑

a∈{0,1}n\{0}
LPa(P) =

∑

a∈{0,1}n\{0}

(
E

(
(−1)a•h(L)

))2
.

– 75 –



Chapter 7 Projection-Based Distinguishers Between two Sources

Since h is GF(2)-linear we have a • h(L) = th(a) • L for all a ∈ L, where th denotes the
transpose of h. Consequently,

∆(P) =
∑

a∈{0,1}n\{0}
LPth(a)(P̃) ≤ (2n − 1)LPmax(P̃).

The previous theorem is meaningful for practical cases, where N large (e.g.,
N = 128) so that the best distinguisher cannot be implemented, and where n is small
enough so that the extended linear distinguisher can be easily implemented (e.g. n <
30). When it is the case, the factor 2n − 1 can be assumed to be small. Consequently,
if a biased distribution P̃ on L = {0, 1}N cannot be distinguished from the uniform
distribution by a linear distinguisher (which happens iff LPmax(P̃) is negligible), then
the previous theorem shows that an extended linear distinguisher (which roughly needs
1/∆(P) samples to reach a non-negligible advantage) cannot be much more efficient.

Example 7.2 (Multiple linear characteristics) As an example of extended linear
distinguisher, we consider the concatenation of several linear projections. More pre-
cisely, we let h(1), h(2), . . . , h(n) : {0, 1}N → {0, 1} be n linear projections and consider
h : {0, 1}N → {0, 1}n defined by h = (h(1), h(2), . . . , h(n)). Letting L ∈ L be a random
variable sampled according to a biased distribution P̃, we denote by P(i) the distribution
of h(i)(L) for i = 1, 2, . . . , n and by P = P(1)×P(2)× · · · ×P(n) the distribution of h(L).
Theorem 7.1 implies that

∆(P) ≤ (2n − 1)LPmax(P̃).

This has a notable implication on multiple-linear cryptanalysis, where several char-
acteristics are concatenated. It shows that one cannot expect to need less than q/n
samples to distinguish P̃ from the uniform distribution when n distinct characteristics
are used and if q samples would be needed by a linear distinguisher. This result is
correct regardless of the dependency between the n characteristics.

We now consider a more general case than that considered in Example 7.2: we
consider the concatenation of several (not necessarily Boolean nor linear) projections,
but in the case where the h(i)(L)’s are mutually independent random variables.

Proposition 7.3 Let N,n, d be three positive integers such that N ≥ d · n. Let L be a
random variable sampled in a finite set {0, 1}N . Let h(i) : {0, 1}N → {0, 1}n for i =
1, 2, . . . , d and h = (h(1), h(n), . . . , h(d)), such that the h(i)(L)’s are mutually independent
random variables. Denoting Pi the distribution of h(i)(L) for all i = 1, 2, . . . , d and
letting P = P1 × P2 × · · · × Pd we have

∆(P) + 1 =
d∏

i=1

(∆(Pi) + 1) .
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Proof. We let Zi = h(i)(L) for i = 1, 2, . . . , d, so that Zi ∼ Pi. Starting from Proposi-
tion 7.2,

∆(P) =
∑

(a1,...,ad)∈Zd\{0}

(
E

(
(−1)a1•Z1⊕···⊕ad•Zd

))2

=
∑

(a1,...,ad)∈Zd\{0}

d∏

i=1

(
E

(
(−1)ai•Zi

))2

where we used the mutual independence of the Zi’s. The announced result easily follows
by applying Proposition 7.2 again.

This result shows that merging n independent biases should only be considered
when their respective amplitudes are within the same order of magnitude.

Let us summarize the results we obtained about linear distinguishers in this
subsection. Given a probability distribution P̃ on a “large” set L = {0, 1}N , we have
compared the best distinguisher between P̃ and the uniform distribution to the best
linear distinguisher (Corollary 7.2) and showed that the ratio between their respective
data complexities is bounded by 2N , which is large by assumption. This result is more
of theoretical interest since the best distinguisher cannot be implemented anyway, due
to the assumption made on the cardinality of L. On the practical side, we considered
a wide class of projection-based distinguishers, namely extended linear distinguishers
(which include multiple linear distinguishers) and showed that, to a certain extent, if P̃
cannot be distinguished from a uniform distribution by means of a linear distinguisher,
then an extended linear distinguisher won’t succeed either. In the light of this dis-
cussion, one may wonder if resistance to linear distinguishers always implies a certain
resistance to any projection-based distinguishers (that would reduce the sample size
enough, so that the best distinguisher can be implemented). The following example
shows that this is not the case, as it is possible to find a biased distribution P which
cannot be distinguished from the uniform distribution by a linear distinguisher (the
value of LPmax(P̃) is negligible) but which can be in the absolute using a (non-linear)
distinguisher.

Example 7.3 We consider the ring Z4 of integers modulo 4 and use their binary
representation (i.e., 0 is 00, 1 is 01, and so forth). For a positive integer n such that
n + 1 is divisible by 4, let L = Zn+1

4 . An element of L can be represented as a N -bit
string where N = 2n + 2. We let P̃0 be the uniform distribution over L and P̃1 be
such that when sampled according to this distribution, (X1, X2, . . . , Xn+1) ∈ L is such
that (X1, X2, . . . , Xn) ∈ Zn

4 is uniformly distributed and Xn+1 = (Y +
∑n

i=1 Xi) mod 4,
where Y ∈ {0, 1} is uniformly distributed. Let P̃ be the sample distribution. It is easy
to construct a (Boolean) projection-based distinguisher that easily distinguishes P̃ = P̃1
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from P̃ = P̃0. We let h : L → {0, 1} be such that

h(x1, x2, . . . , xn+1) = msb

((
xn+1 −

n∑

i=1

xn

)
mod 4

)
.

Clearly, when the Xi’s are uniformly distributed, h(X1, X2, . . . , Xn+1) is uniformly
distributed. When (X1, X2, . . . , Xn+1) ∼ P̃1 (i.e., when P̃ = P̃1), then we always
have h(X1, X2, . . . , Xn+1) = 0. As a consequence, if we denote by P1 the SEI of
h(X1, X2, . . . , Xn+1) when the (X1, X2, . . . , Xn+1) ∼ P̃1, we have ∆(P1) = 1. This
implies (according to the discussion of Section 6.7) that the projection-based distin-
guisher based on h easily distinguishes P̃ = P̃1 from P̃ = P̃0 with a few samples. On
the other hand, we will show that LPmax(P̃1) = 2−(n+1), which is small by assumption.

Since each xi lies in Z4, it can be described by two bits xH
i and xL

i , such that
xi = 2xH

i + xL
i = xH

i ‖xL
i . Any linear distinguisher can be defined by a projection hlin

such that

hlin(x1, x2, . . . , xn+1) =




n+1⊕

j=1

ajx
L
j


⊕




n+1⊕

j=1

bjx
H
j


 ,

where a1, . . . , an+1, b1, . . . , bn+1 ∈ {0, 1} with at least one non-zero value. In the case
where (X1, X2, . . . , Xn+1) ∼ P̃1, it is easy so show that

XL
n+1 ⊕ Y =

n⊕

j=1

XL
j , and

XH
n+1 =




n⊕

j=1

XH
j


⊕


 ⊕

0≤j<k≤n

XL
j XL

k


⊕




n⊕

j=1

XL
j Y


 .

Thus denoting B the value of the bit hlin(X1, X2, . . . , Xn+1) in this case, we have

B =




n⊕

j=1

(aj ⊕ an+1)XL
j


⊕




n⊕

j=1

(bj ⊕ bn+1)XH
j


⊕ an+1Y

⊕

bn+1

⊕

1≤j<k≤n

XL
j XL

k


⊕


bn+1

n⊕

j=1

XL
j Y


 .

If bn+1 = 0 we can see that PreP=eP1
[B = 0] = 1

2 (as at least one of the a1, . . . , an+1,

b1, . . . , bn is strictly positive), hence LP(P̃1) = LP(B) = 0 in this case. If bn+1 = 1, we
have

B =




n⊕

j=1

(aj ⊕ an+1)XL
j


⊕




n⊕

j=1

bjX
H
j


⊕ an+1Y

⊕

 ⊕

1≤j<k≤n

XL
j XL

k


⊕




n⊕

j=1

XL
j Y


 .
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If one of the bj ’s is non-zero, then B is uniformly distributed and the linear probability
is zero again. We now assume that bj = 1 for all j = 1, . . . , n and get

B =




n⊕

j=1

(aj ⊕ an+1)XL
j


⊕ an+1Y ⊕


 ⊕

1≤j<k≤n

XL
j XL

k


⊕




n⊕

j=1

XL
j Y


 .

For j = 1, 2, . . . , n we let αj = aj ⊕ an+1, Uj = XL
j , αn+1 = an+1, and Un+1 = Y . Note

that the Ui’s are mutually independent random bits and that there is no constraint on
the αi’s. The previous equation reduces to

B =




n+1⊕

j=1

αjUj


⊕


 ⊕

1≤j<k≤n+1

UjUk


 . (7.4)

We are looking for the αi’s that maximize LP(B). We will now show that, for any
choice of α1, . . . , αn, the choice of αn+1 makes no difference on LP(B). By symmetry,
this implies that for any choice of α1, . . . , α`−1, α`+1, . . . , αn+1, where ` = 1, . . . , n + 1,
the choice of α` has no influence on LP(B). As a consequence, all the possible choices of
α1, . . . , αn+1 are equivalent with respect to the resulting value of LP(B), so that we will
choose αi = 0 for all i = 1, . . . , n + 1. We now show that for any choice of α1, . . . , αn,
the choice of αn+1 makes no difference on LP(B).

• If we set αn+1 = 0, equation (7.4) can be written as

B = (1⊕ Un+1)




n⊕

j=1

αjUj


⊕


 ⊕

1≤j<k≤n

UjUk


 = (1⊕ Un+1)B1 ⊕B2,

where B1 =
⊕n

j=1 αjUj and B2 =
(⊕

1≤j<k≤n UjUk

)
are random bits, indepen-

dent from Un+1. Consequently,

Pr[B = 0] =
1
2
Pr[B = 0|Un+1 = 0] +

1
2
Pr[B = 0|Un+1 = 1]

=
1
2
Pr[B1 ⊕B2 = 0] +

1
2
Pr[B2 = 0]. (7.5)

• Similarly, if we set αn+1 = 1, equation (7.4) can be written as

B = (1⊕ Un+1)B1 ⊕B2 ⊕ Un+1,

using the same notations. Consequently,

Pr[B = 0] =
1
2
Pr[B = 0|Un+1 = 0] +

1
2
Pr[B = 0|Un+1 = 1]

=
1
2
Pr[B1 ⊕B2 = 0] +

1
2
Pr[B2 = 1]. (7.6)
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Using Lemma 3.1 in Appendix C, we note that

B2 =
∑

1≤1<k≤n

UjUk mod 2 =
W (W − 1)

2
mod 2,

where W denotes the Hamming weight of the binary string U1‖ · · · ‖Un. Consequently,

Pr[B2 = 0] = Pr[W mod 4 = 0 or 1]
= Pr[W mod 4 = 0] + Pr[W mod 4 = 1], and

Pr[B2 = 1] = Pr[W mod 4 = 2 or 3]
= Pr[W mod 4 = 2] + Pr[W mod 4 = 3].

It is easy to see that, since we assumed that n + 1 is divisible by 4,

Pr[W mod 4 = 0] =

n−3
4∑

k=0

Pr[W = 4k] = 2−n

n−3
4∑

k=0

(
n

4k

)
. (7.7)

Similarly:

Pr[W mod 4 = 1] = 2−n

n−3
4∑

k=0

(
n

4k + 1

)

Pr[W mod 4 = 2] = 2−n

n−3
4∑

k=0

(
n

4k + 2

)

Pr[W mod 4 = 3] = 2−n

n−3
4∑

k=0

(
n

4k + 3

)

Letting ` = n−3
4 − k in (7.7) and using Pascal’s rule, it is easy to see that

Pr[W mod 4 = 0] = 2−n

n−3
4∑

`=0

(
n

n− (` + 3)

)
= Pr[W mod 4 = 3].

Similarly, Pr[W mod 4 = 1] = Pr[W mod 4 = 2] and we conclude that

Pr[B2 = 0] = Pr[B2 = 1] =
1
2
.

Plugging this result in (7.5) and in (7.6) we see that, whatever the choice of αn+1 ∈
{0, 1}, the value of Pr[B = 0] (and thus of LP(B)) remains the same. Any choice being
equivalent, we choose to set αn+1 = 0. Proceeding in the same way for all αi’s we see
that (7.4) reduces to

B =
⊕

1≤j<k≤n+1

UjUk. (7.8)
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Using Lemma 3.1 in Appendix C again, we deduce from the previous equation that

B =
W ′(W ′ − 1)

2
mod 2,

where W ′ denotes the Hamming weight of the bit string U1‖ · · · ‖Un+1. We thus have

Pr[B = 0] = Pr[W ′ mod 4 = 0] + Pr[W ′ mod 4 = 1].

Using the law of total probability (based on the condition Un+1 = 0 or 1) we easily
obtain that

Pr[B = 0] =
1
2
(2Pr[W mod 4 = 0] + Pr[W mod 4 = 1] + Pr[W mod 4 = 3])

=
1
2

+
1
2
(Pr[W mod 4 = 0]− Pr[W mod 4 = 2])

=
1
2

+ 2−(n+1)




n−3
4∑

k=0

(
n

4k

)
−

n−3
4∑

k=0

(
n

4k + 2

)


=
1
2

+ 2−(n+3)((1 + i)n+1 + (1− i)n+1) (7.9)

using Lemma 3.2 in Appendix C. Noticing that

(1 + i)n+1 + (1− i)n+1 = 2n+1(ei(n+1)π
4 + e−i(n+1)π

4 )

= 2 · 2n+1
2 cos((n + 1)

π

4
)

= 2 · 2n+1
2 (−1)

n+1
4 ,

we easily conclude from this and from (7.9) that

LPmax(P̃1) = LP(B) = 2−(n+1).

7.5 Extending the Notion of Linear Probability to Arbitrary

Sets

In the digital age, information is mostly seen as a sequence of bits and, natu-
rally, most block ciphers and cryptanalytic tools assume that the sample space is made
of binary strings. This restriction is quite questionable though, as it is easy to think of
specific settings in which it could be desirable to adapt the block size to the data being
encrypted. For example, when considering credit card numbers, social security numbers,
payment orders, schedules, telegrams, calendars, or string of alphabetical characters, it
seems that there is no reason what so ever to restrict to binary strings. Whereas an
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apparently straightforward solution would be to encode the data prior encryption, the
loss in terms of simplicity (inevitably affecting the security analysis) and of efficiency
would be unfortunate.

Although most modern block ciphers (e.g., [1,3,6,41,76,101,145]) are defined
on a binary set, practical and efficient examples of block ciphers defined on a set of
arbitrary size exist (see for example Schroeppel’s “omnicipher” Hasty Pudding [138]).
Some others, although still defined on binary sets, suggest to use a mixture of group laws
over the same set. For example, IDEA [96] combines three group structures: exclusive
bit or, addition modulo 216 and a tweaked multiplication modulo 216 + 1. Designing a
block cipher with an arbitrary block space can be particularly challenging since the state
of the art concerning alternate group structures is very limited. Although differential
cryptanalysis [21], through the theory of Markov ciphers [97], can be specified over an
arbitrary group, linear cryptanalysis [110, 111] is based on a measurement (the linear
probability) that sticks to bit strings. Applying this attack against a non-binary block
cipher would at least require to generalize this notion.

In the following sections, we re-visit linear distinguishers but without assuming
that the underlying set is made of bit strings. Consequently, the only structure we can
consider on these sets is that of finite Abelian Groups. We first recall essential results on
characters which will play a central role in the generalization of the linear probability.

Characters over Finite Abelian Groups

Let G be a finite group of order n. We let L2(G) denote the n-dimensional
vector space of complex-valued functions f on G. The conjugate f of f is defined by
f(a) = f(a) for all a ∈ G. We define an inner product on L2(G) by

(f1, f2) =
∑

a∈G

f1(a)f2(a).

The Euclidean norm of f ∈ L2(G) is simply

‖f‖2 = (f, f)1/2 =

(∑
a

|f(a)|2
)1/2

.

Consequently, L2(G) is actually a Hilbert Space.

Definition 7.5 A character of an Abelian group G is a homomorphism χ : G → C×,
where C× is the multiplicative group of nonzero complex numbers.

If χ : G→ C× is a character, then χ(1) = 1 and χ(a1a2) = χ(a1)χ(a2) for all
a1, a2 ∈ G. Clearly, χ(a) is a nth root of unity, hence χ(a) = χ(a)−1. The product of
two characters χ1 and χ2 is defined as

χ1χ2(a) = χ1(a)χ2(a)
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for all a ∈ G. The character χ0 defined by χ0(a) = 1 for all a ∈ G is the neutral element
for this operation. Clearly, χ−1 = χ. The set of all characters of G is a group, called
the dual group of G, and denoted Ĝ. We know that G is isomorphic to Ĝ [121].

Lemma 7.4 [Theorems 4.6 and 4.7 in [121]] Let G be a finite Abelian group of order
n, and let Ĝ be its dual group. If χ ∈ Ĝ (resp. a ∈ G) then

∑

a∈G

χ(a) =

{
n if χ = χ0,
0 otherwise,

resp.
∑

χ∈bG
χ(a) =

{
n if a = 1,
0 otherwise.

If χ1, χ2 ∈ Ĝ (resp. a, b ∈ G) then

∑

a∈G

χ1(a)χ2(a) =

{
n if χ1 = χ2,
0 otherwise,

resp.
∑

χ∈bG
χ(a)χ(b) =

{
n if a = b,
0 otherwise.

If χ1, χ2 are characters of G, we deduce (χ1, χ2) = n if χ1 = χ2 and 0 otherwise.
Therefore, the n characters of the dual group Ĝ is an orthogonal basis of the vector
space L2(G).

Definition 7.6 [Fourier transform] The Fourier transform of f ∈ L2(G) is the function
f̂ ∈ L2(Ĝ) such that

f̂(χ) = (f, χ) =
∑

a∈G

f(a)χ(a) for all χ ∈ Ĝ.

If f̂ ∈ L2(Ĝ) is the Fourier transform of f ∈ L2(G), then the Fourier inversion
is

f =
1
n

∑

χ∈bG
f̂(χ)χ.

Theorem 7.2 [Plancherel’s formula] If f̂ ∈ L2(Ĝ) is the Fourier transform of f ∈ L2(G),
then

‖f̂‖2 =
√

n‖f‖2.

Extending the Notion of Linear Probability

Consider the particular case where G = {0, 1}k, χu(a) = (−1)u•a for all u, a ∈
G, and where • denotes the inner dot product in G. The mapping u 7→ χu is an
isomorphism between G and Ĝ. Consequently, when G = {0, 1}k any character χ of G
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can be expressed as χ(a) = (−1)u•a for some u ∈ G. It is easy to make the parallel
with linear cryptanalysis, where u is a mask, so that there is a one-to-one mapping
between masks and characters in this case. So, it seems reasonable to generalize linear
cryptanalysis on any finite Abelian group by using characters instead of masks.

Definition 7.7 Let H be a finite subgroup of C× of order d. Let H ∈ H be a random
variable. The linear probability of H is denoted LP(H) and is defined by

LP(H) = |E(H)|2 =

∣∣∣∣∣
∑

h∈H

hPr[H = h]

∣∣∣∣∣
2

.

Let G be an Abelian group and let χ : G → C× be a character of order d. The linear
probability of random variable G ∈ G with respect to the character χ is the linear
probability of χ(G), i.e.,

LPχ(G) = LP(χ(G)).

Let P̃ be a probability distribution over G. The linear probability of P̃ with respect to the
character χ is the linear probability (with respect to the same character) of a random
variable following this distribution, i.e., if G ∼ P̃ then

LPχ(P̃) = LPχ(G).

Note that LPχ(P̃) = |̂̃P[χ]|2, so that the linear probability of χ is simply the
square of magnitude of the discrete Fourier transform of the probability distribution.
In the particular case where G = {0, 1}`, we can see that for any u we have LPu(P̃) =
LPχu(P̃), so that Definition 7.7 indeed generalizes the earlier notion of linear probability
(see Definition 7.3).

7.6 Linear Distinguishers for Sources over Arbitrary Sets

From the study of the classical setting described in Subsection 7.3 we see
that, essentially, a linear distinguisher tries to distinguish a uniform distribution P0

on Z = {0, 1} from a biased distribution P1 which is completely described by its bias
ε ∈ R with respect to P0, i.e., P1 = (1+ε

2 , 1−ε
2 ) = (1−ε

2 + ε, 1−ε
2 ). In that case, the

linear probability of B ∼ P1 is LP(B) = ε2. When extending linear cryptanalysis
to arbitrary sets, we will assume the exact same setting when the character used to
reduce the sample space is of order 2. For characters of higher order d, considering two
simple hypotheses appears too restrictive. Instead, we will assume that the alternate
hypothesis is composite but only once the sample space is reduced. More precisely, let
G be a large group, χ : G→ C of order d, and H = χ(G) which is a subgroup of C× of
order d. We consider two distributions P̃0, P̃1 over G, where P̃0 is uniform. For G ∈ G

we let H = χ(G). We assume that when G ∼ P̃0 then H ∼ P0 where P0 is the uniform

– 84 –



Section 7.6 Linear Distinguishers for Sources over Arbitrary Sets

distribution over H (in particular, this implies that d divides the order of G and that
χ is balanced). When G ∼ P̃1 then H ∼ Pu, where u ∈ H is unknown, and where Pu is
the distribution over H defined by

Pu[h] =

{
1−ε
d + ε when h = u

1−ε
d otherwise,

(7.10)

where 0 < ε < 1. Letting P̃ be the distribution of G ∈ G and P the distribution of
H = χ(G), we can write the hypothesis testing problem

H0 : P̃ = P̃0 vs. H1 : P̃ = P̃1

as
H0 : P = P0 vs. H1 : P ∈ {Pu : u ∈ H}.

Lemma 7.5 Let P0 be the uniform distribution on a finite subgroup H of C× of order d.
Let D = {Pu : u ∈ H} be a set of d distributions on H defined by (7.10). The q-limited
distinguisher between the null hypothesis H0 : P = P0 and the alternate hypothesis
H1 : P ∈ D defined by the distribution acceptance region Π?

q = Π? ∩ Pq, where

Π? =
{

P ∈ P : ‖P‖∞ ≥ log(1− ε)
log(1− ε)− log(1 + (d− 1)ε)

}
, (7.11)

is asymptotically optimal and its advantage BestAdvq is such that

1− BestAdvq(H0, H1)
.= 2q inf0<λ<1 log 1

d((1+(d−1)ε)λ+(d−1)(1−ε)λ).

Proof. According to Theorem 6.4, the best distinguisher is defined by the acceptance
region

Π? = {P ∈ P : min
u∈H

Lu(P) ≤ 0} with Lu(P) =
∑

h∈H

P[h] log
P0[h]
Pu[h]

.

Since
Lu(P) = P[u] log

1− ε

1 + (d− 1)ε
− log(1− ε),

the minimum is obtained for the u ∈ H which maximizes P (recall that ε > 0). From
this we easily deduce (7.11). In that case, Theorem 6.4 also states that

1− BestAdvq(H0, H1)
.= max

u∈H
2−qC(P0,Pu).

It is easy to see that C(P0, Pu) = C(P0, Pu′) for u 6= u′, so that

1− BestAdvq(H0,H1)
.= 2−qC(P0,Pu)
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for any u ∈ H. The definition of the Chernoff information allows to conclude.

It should be noted that for all u ∈ H, if H ∼ Pu we have

LP(H) =

∣∣∣∣∣∣
u

(
1− ε

d
+ ε

)
+

∑

h∈H\{u}
h

1− ε

d

∣∣∣∣∣∣

2

=

∣∣∣∣∣uε +
1− ε

d

∑

h∈H

h

∣∣∣∣∣
2

= |ε|2 ,

since
∑

h∈H h = 0 (as the h’s are the d roots of unity) and since |u| = 1. Consequently,
if G ∼ P̃1 then LPχ(G) = ε2, regardless of which distribution among the Pu’s is actually
followed by χ(G). It makes thus sense so write

LPχ(P̃1) = ε2.

Moreover, for close distributions we have

inf
0<λ<1

log
(

1
d

(
(1 + (d− 1)ε)λ + (d− 1)(1− ε)λ

))
≈ d− 1

8 ln 2
ε2

and
log(1− ε)

log(1− ε)− log(1 + (d− 1)ε)
≈ 1

d
+

1
2

(
1− 1

d

)
ε,

so that we can deduce the following heuristic from Lemma 7.5.

Heuristic 7.2 Let P̃0 and P̃1 be two distributions of full support over a finite Abelian
group G, such that P̃0 is uniform. Let χ : G→ C× be a character of order d. Assuming
that LPχ(P̃1)¿ 1, the q-limited linear distinguisher LAq between P̃0 and P̃1 based on
the character χ reaches a non-negligible advantage when

q =
8 ln 2

(d− 1)LPχ(P̃1)
.

It is optimal among all possible linear distinguishers reducing the sample space by means
of characters and outputs 1 when

(
‖PHq‖∞ − 1

d

)2

≥ 1
4

(
1− 1

d

)2

LPχ(P̃1),

where Hq = H1,H2, . . . , Hq are the q samples such that Hi = χ(Gi), where the Gi’s are
the original source samples.

Case Study: Zr
m-based Linear Cryptanalysis

We illustrate the theory with a concrete example, that is, linear cryptanalysis
over the additive group Zr

m. For any positive integer d such that d|m, we define ϕd
a for

a = (a1, . . . , ar) where a` ∈ {0, 1, . . . , d− 1} for ` = 1, . . . , r by

ϕd
a : Zr

m −→ C×

x 7−→ ϕd
a(x) = e

2πi
d

Pr
`=1 a`x` .
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The mr characters of the additive group Zr
m are called additive characters modulo

m [121] and are the ϕm
a ’s. Note that a character ϕm

a of order d can be expressed as
ϕm

ma/d.
We revisit Example 7.3 on page 77 where a source generating a random variable

X = (X1, . . . , Xn+1) ∈ Zn+1
4 is considered (where n + 1 is divisible by 4). When the

source follows the distribution P̃0, X is uniformly distributed. When the source follows
distribution P̃1, X1, . . . , Xn are uniformly distributed mutually independent random
variables in Z4 and Xn+1 = Y +

∑n
i=1 Xi, where Y is either 0 or 1 with equal probability

and where the addition is performed modulo 4. Considering X as a bit string of length
2n+2. We showed in Example 7.3 that maxα LPϕ2

α
(P̃1) = 2−(n+1) (the max being taken

over classical linear masks), which means that the source cannot be distinguished from
a perfectly random one using a classical linear distinguisher.

We will now show that P̃1 can easily be distinguished from P̃0 by a generalized
linear distinguisher, and more precisely, by a linear distinguisher of order 4. Let a =
(−1, . . . ,−1, 1) ∈ Zn+1

4 and consider the character ϕ4
a over Zn+1

4 . In this case we have

LPϕ4
a
(P̃1) =

∣∣∣E
(
e

πi
2

(Xn+1−
Pn

`=1 X`)
)∣∣∣

2
=

∣∣∣E
(
e

πi
2

Y
)∣∣∣

2
=

1
2
.

According to Heuristic 7.2, only a few samples are then needed to a linear distinguisher
based on ϕ4

a in order to distinguish (with a non-negligible advantage) P̃1 from the
uniform distribution. Through this example, we notice that there can be a huge gap
between linear distinguishers of order 2 and linear distinguishers of order 4.

7.7 A Fundamental Link Between Projection-Based and Lin-

ear Distinguishers

In Proposition 7.2 (on page 73), we showed that the squared Euclidean im-
balance (SEI) of a distribution P̃ over L = {0, 1}N is linked to its (classical) linear
probabilities by

∆(P̃) =
∑

a∈L\{0}
LPa(P̃).

This result can be easily adapted to the generalized linear probabilities defined earlier.
We first note that the distribution P̃ over the group G of order N is completely

defined by the mapping

feP : G −→ R
a 7−→ feP(a) = εa = P̃[a]− 1

N .
(7.12)

Using this notation and the elementary Fourier analysis introduced in Subsection 7.5,
we obtain the following expression of the squared Euclidean imbalance.

Lemma 7.6 Let G be a finite Abelian group of order N and let P̃ be a probability
distribution over G. We have

∆(P̃) = N‖feP‖22 = ‖̂feP‖22,
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where feP is defined as in (7.12).

Proof. From Definition 6.10, and using the notations of this section concerning the εa’s,
we have

∆(P̃) = N
∑

a∈G

ε2a = N
∑

a∈G

feP(a)2 = N‖feP‖22.

Plancherel’s formula (Theorem 7.2) allows to conclude.

Lemma 7.7 Let G be a finite Abelian group and let P̃ be a probability distribution
over G. Let A ∈ G be a random variable sampled according to P̃. For all characters
χ : G→ C× we have

f̂eP(χ) =

{
E(χ(A)) when χ 6= χ0

0 otherwise,

where feP is defined as in (7.12).

Proof. Let N denote the order of G. By definition, for all χ ∈ Ĝ we have

f̂eP(χ) =
∑

a∈G

feP(a)χ(a) =
∑

a∈G

(
P̃[a]− 1

N

)
χ(a) =

∑

a∈G

P̃[a]χ(a)− 1χ=χ0 ,

where the last equality relies on Lemma 7.4.

Based on lemmas 7.6 and 7.7, we can now easily generalize Proposition 7.2.

Proposition 7.4 [Generalization of Proposition 7.2] Let P̃ be a probability distribution
over the finite Abelian group G. The squared Euclidean imbalance (SEI) of P̃ is related
to its linear probabilities by:

∆(P̃) =
∑

χ∈bG\{χ0}
LPχ(P̃). (7.13)

Proof. The result easily follows by successively using lemmas 7.6 and 7.7.

Equation 7.13 can be pretty insightful: in situations where one particular
character χ is such that LPχ(P̃) overwhelms all other linear probabilities, then this
single character can be used to approximate the linear hull (that is, the cumulative
effect of all characteristics). In that case, there exists a linear distinguisher which is
nearly optimal in terms of the number of samples.

Proposition 7.4 also allows to study what happens when combining indepen-
dent sources. We consider two examples where we respectively add and concatenate
independent samples.

Lemma 7.8 (Addition of Sources) Let G be a finite Abelian group. Let A1, A2 ∈ G be
two independent random variables of respective distributions P̃1 and P̃2. Let P̃ be the
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distribution of the random variable A1 + A2. We have

∆(P̃) ≤ ∆(P̃1)∆(P̃2).

Proof. Successively using the fact that characters are homomorphisms and that the
random variables A1 and A2 are independent we obtain that for all χ ∈ Ĝ

LPχ(P̃) = |E(χ(A1))E(χ(A2))|2 = LPχ(P̃1)LPχ(P̃2).

From this and from Proposition 7.4 we deduce

∆(P̃) ≤

 ∑

χ∈bG\{χ0}
LPχ(P̃1)





 ∑

χ∈bG\{χ0}
LPχ(P̃2)


 = ∆(P̃1)∆(P̃2).

Note that the previous bound is tight whenever there exists χ ∈ Ĝ such that
∆(P1) ≈ LPχ(P̃1) and ∆(P2) ≈ LPχ(P̃2).

Lemma 7.9 (Concatenation of Sources) Let G1 and G2 be two finite Abelian groups,
and let G = G1 × G2. Let A1 ∈ G1 and A2 ∈ G2 be two independent random variables
of respective distributions P̃1 and P̃2. Let P̃ be the distribution of the random variable
(A1, A2) ∈ G. We have

∆(P̃) = (∆(P̃1) + 1)(∆(P̃2) + 1)− 1.

Proof. From Proposition 7.4 we know that ∆(P̃) =
∑

χ∈bG LPχ(P̃). Since Ĝ ∼= G =

G1 ×G2
∼= Ĝ1 × Ĝ2, this gives

∆(P̃) =
∑

(µ,κ)∈bG1×bG2

LPµ(P̃1)LPκ(P̃2) = (∆(P̃1) + 1)(∆(P̃2) + 1)− 1.

We note that when both ∆(P̃1) and ∆(P̃2) are small, then the previous lemma
shows that ∆(P̃) ≈ ∆(P̃1) + ∆(P̃2).

In the rest of this subsection, we will reconsider Example 7.3 and show that
the fact that a (well chosen) generalized linear distinguisher succeeds where a classical
linear distinguisher eventually fails is not exceptional. More precisely, we will show
that if a given biased distribution can be distinguished from the uniform distribution
with a non negligible advantage by some distinguisher, then there exists a generalized
linear distinguisher which can also distinguish it with a non negligible advantage, i.e.,
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there exists a group structure on the underlying set and a powerful linear distinguisher
defined with respect to this structure.

Definition 7.8 Let P̃ be a probability distribution over a finite Abelian group G. We
denote by LPm

max(P̃) the maximum value of LPχ(P̃) over χ ∈ Ĝ \ {χ0} where the order
of χ divides m, i.e.,

LPm
max(P̃) = max

χ∈bG\{χ0}
χm=χ0

LPχ(P̃).

We denote by LPm
MAX(P̃) the maximum value of LPm

max(P̃) over all group laws that can
be defined on the finite set G, i.e., if ♦ denotes an arbitrary group law on the finite set
G we let

LPm
MAX(P̃) = max

♦
LPm

max(P̃).

In the previous definition, we note that LPm
max is a measure that depends of

the underlying group structure whereas LPm
MAX is not. Using these notations, we can

deduce the following lemma from Proposition 7.4.

Lemma 7.10 Let P̃ be a probability distribution over a finite Abelian group G of order
N . Let m be the exponent of G. Then,

∆(P̃) ≤ (N − 1)LPm
max(P̃) and ∆(P̃) ≤ (N − 1)LPm

MAX(P̃).

Proof. Since m is the exponent of G and since G ∼= Ĝ, then LPχ(P̃) ≤ LPm
max(P̃) for all

χ ∈ Ĝ. Proposition 7.4 allows to conclude.

This result shows that the best distinguisher between a biased distribution P̃
and the uniform distribution has a data complexity at least n − 1 times smaller than
the one of the best distinguisher between P̃ and the uniform distribution. This result
is not really of practical interest since one usually considers linear (or more generally,
projection-based) distinguishers when the best distinguisher cannot be implemented.
The following theorem (which is a generalization of Theorem 7.1) links the data com-
plexity of the best distinguisher on the reduced sample space and the best generalized
linear distinguisher. It shows that in the particular case where the sample space is
reduced by a homomorphic projection, bounding the linear probability of the source is
sufficient to bound the advantage of the best distinguisher on the reduced sample space.

Theorem 7.3 Let G and H be two finite Abelian groups of order N and n respectively,
such that n|N . Let h : G→ H be a surjective group homomorphism. Let P̃ be a proba-
bility distribution of support G and let G ∈ G be a random variable sampled according
to P̃. Let P be the distribution of h(G) ∈ H. Then:

∆(P) ≤ (n− 1)LPn
max(P̃).
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Proof. From Proposition 7.4 we have

∆(P) =
∑

χ∈bH\{χ0}
LPχ(P) =

∑

χ∈bH\{χ0}
LPχ◦h(P̃) ≤ (n− 1)LPn

max(P̃).

Concerning the inequality, we note that κ = χ◦h is a character of G such that κn = κ0.
Consequently,

max
χ∈bH\{χ0}

LPχ◦h(P̃) ≤ max
κ∈bG\{κ0}
s.t. κn=κ0

LPκ(P) = LPn
max(P).

We stress that the previous theorem only applies when the sample space is
reduced through a group homomorphism, i.e., in a linear way. Indeed, there exists
practical examples of random sources with a small LPn

max(P̃) that are significantly
broken when the source space is reduced by a (well chosen) non-homomorphic projection
(see the case study on page 86). Consequently, the previous result tells us nothing about
the advantage of an adversary using an arbitrary projection. In what follows we show a
security criterion which is sufficient to obtain provable security against any projection-
based distinguisher based on a balanced projection.

Theorem 7.4 Let G and H be two finite Abelian groups of order N and n respectively,
such that n|N . Let h : G→ H be a balanced projection. Let P̃ be a probability distribu-
tion of support G and let G ∈ G be a random variable sampled according to P̃. Let P
be the distribution of h(G) ∈ H. Then:

∆(P) ≤ (n− 1)LPn
MAX(P̃).

Proof. We first define a group structure on H such that h is a homomorphism. Let
H = {h1, h2, . . . , hn} (where h1 is the neutral element) and let Gi = h−1(hi) ⊂ G for
i = 1, 2, . . . , n. Since h is balanced, the Gi’s form a partition of G and are such that
|Gi| = N

n for i = 1, 2, . . . , n. Based on the group law on H, we can define the product
GiGj by

Gk = GiGj ⇔ hk = hihj ,

for all i, j, k = 1, 2, . . . , n. This directly defines a group law on the Gi’s, the identity
element being G1, the inverse of Gi being h−1(h−1

i ), the associativity following directly
from the one of the law defined on H.

Consider an arbitrary group law on G1 and let τi : G1 → Gi define a bijection
between G1 and Gi for i = 1, 2, . . . , n (where τ1 is the identity). Let x, y ∈ G be two
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arbitrary elements and let i, j, k be such that x ∈ Gi, y ∈ Gj and Gk = GiGj . We
defined the product xy on G by

xy = τk(τ−1
i (x)τ−1

j (y)).

It is easy to see that this product is a group law on G. The neutral element is actually
the neutral element of the group law defined on G1, the inverse of x ∈ Gi is τ`(τ−1

i (x)−1)
(where ` is such that G−1

i = G`). It is moreover easy to see that the projection h : G→ H

is a group homomorphism with respect to the group law we have just defined on G.
Indeed, using the previous notations we have h(x)h(y) = gigj = gk = h(xy).

Given the group law we just defined on G, we can apply Theorem 7.3 (since h
is a homomorphism with respect to this group law) and get

∆(P) ≤ (n− 1)LPn
max(P̃).

Since LPn
max(P̃) ≤ LPn

MAX(P̃) and since LPn
MAX(P̃) does not depend on the group law

on G, the result follows.

Consequently, assuming there exists an “efficient” projection-based distin-
guisher on P̃ based on a balanced projection h on a “small” set H, ∆(P) must be
large, n must be small and thus, according to the previous theorem, LPn

MAX(P̃) must
be large. This means there exists a group structure on G and a character on this
group of small order that define an effective linear cryptanalysis: if we can efficiently
distinguish by compressing the samples, we can also do it linearly.

To the best of our knowledge, all widespread block ciphers provably secure
against linear cryptanalysis consider in their security proof a specific group or field
structure on the text space. Usually, the most convenient is the one used to actually
define the block cipher. Obviously, a potential adversary is not limited to the description
considered by the designers. The previous theorem shows that, provided that a known
plaintext attack on the block cipher exists, then some change to the group structure of
the text space is sufficient to perform a successful linear cryptanalysis of the cipher (note
that finding the correct group structure might be a non-trivial task). In other words,
although the cipher is stated to be provably secure against linear cryptanalysis, it might
not be the case when generalizing linear cryptanalysis to other group structures. This
is mainly due to the fact that the SEI does not depend on the group structure given to
the text space (only the distance of P from the uniform distribution is relevant) whereas
the linear probability is a measure that depends on the group structure. Consequently,
when proving the resistance to linear cryptanalysis, one should ideally bound the value
of LPn

MAX(P̃) and not of LPn
max(P̃) (as it is currently the case for most block ciphers).

7.8 Links with Differential Cryptanalysis

Differential cryptanalysis [21,22,24] is a chosen plaintext attack where pairs of
texts are chosen with a fixed difference. In the case of block ciphers, the adversary looks
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for a high correlation between a specific input difference and a specific output difference.
In the case of random sources we consider a natural way of expressing the main quantity
differential cryptanalysis is based on, namely, the differential probability [124].

Definition 7.9 Let G be a finite Abelian group, let P̃ be a probability distribution over
G, and let A,B ∈ G be two independent random variables sampled according to P̃. The
differential probability of the distribution P̃ over G with respect to the mask u ∈ G is

DPu(P̃) = Pr[A−1 ·B = u] = Pr[B = A · u].

It is known that, in the binary case, linear and differential cryptanalysis are
linked, and in particular that the linear probability is equal to the Fourier transform of
the differential probability [32]. This duality extends to our generalization of the linear
probability as the following lemma shows.

Lemma 7.11 Let G be a finite Abelian group of order N and let P̃ be a probability
distribution over G. Let χ ∈ Ĝ be a character of G and u ∈ G. The inverse Fourier
transform of LPχ(P̃) at the point u is

L̂Pu(P̃) = DPu(P̃).

and the Fourier transform of DPu(P̃) at the point χ is

D̂Pχ(P̃) = LPχ(P̃).

Proof. By definition, LPχ(P̃) = E(χ(A))E(χ(B)) where A,B ∈ G are two independent
random variables sampled according to P̃. Successively using the inverse of the Fourier
transform, the fact that A and B are independent, that the mean is linear, and that χ
is a homomorphism, we have for all u ∈ G:

L̂Pu(P̃) =
1
N

∑

χ∈bG
E (χ(A)χ(B))χ(u) =

1
N

E


∑

χ∈bG
χ(A · u)χ(B)


 ,

which is an expression that we can simplify using Lemma 7.4 in order to obtain
L̂Pu(P̃) = E (1A·u=B) = Pr[A · u = B] = DPu(P̃), which proves the first equality.
Conversely, substituting DP by L̂P in the Fourier transform of the differential proba-
bility and expanding the expression leads to

D̂Pχ(P̃) =
∑

u∈G


 1

N

∑

ρ∈bG
LPρ(P̃)ρ(u)


χ(u) =

1
N

∑

ρ∈bG
LPρ(P̃)

∑

u∈G

ρ(u)χ(u)
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which is an expression that can be simplified using the orthogonality relations given in
Lemma 7.4. We obtain

D̂Pχ(P̃) =
∑

ρ∈bG
LPρ(P̃)1ρ=χ = LPχ(P̃).
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Chapter 8

Projection-Based Distinguishers Between two Oracles

So far we discussed how to distinguish random values. Now we investigate ap-
plications for distinguishing random functions, such as block ciphers, and in particular,
how to transform this into the previous problem. This distinction may look completely
useless from a mathematical point of view since we can consider both cases with the
abstract notion of random variable. The crucial difference comes from implementation
reasons as they live in spaces of quite different sizes. For instance, a random value in
{0, 1}128 is represented by 128 bits whereas a block cipher with 128-bit blocks requires
log2(2128!) ≈ 2135 bits. In practice, the distinguisher doesn’t have access to the full
description of the block cipher but rather to a few input/output pairs.

8.1 From Random Sources to Random Oracles

A block cipher on a finite set is a family of permutations on that set, indexed
by a parameter called the key. More formally, let T and K be two finite sets, respectively
called the text space and the key space. A block cipher C on the text space T and key
space K is a set of |K| permutations on T , i.e.,

C = {Ck : T → T : k ∈ K},

where each Ck is a permutation. For simplicity, we assume from now on that Ck 6= Ck′

when k 6= k′. In practice this might not be always the case, like for example with the
DES which is known to have weak keys [43]. Yet, removing these weak keys from the
key space suffices to solve this issue. When C corresponds to the set of all possible
permutations on T (in which case |K| = |T |!) it is called the perfect cipher and is
denoted C?.

We are mainly interested in distinguishing attacks as they often easily lead to
key recovery attacks. These can be formalized as an hypothesis problem. Let T and K
be two finite sets and let C be a block cipher defined on the text space T and the key
space K. Let C? denote the perfect cipher on T . We consider a random oracle O which
is either sampled uniformly at random among all possible permutations (hypothesis
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O A

P1, P2, . . . , Pq (P1,O(P1)) , (P2,O(P2)) , . . . , (Pq,O(Pq)) 0 or 1

Figure 8.1: Distinguishing attack in a known plaintext setting

H0) or among all the permutations defined by the block cipher C (hypothesis H1). We
denote these hypotheses H0 : O ← C? and H1 : O ← C.

We restrict to known plaintext attacks (like linear cryptanalysis). In this
setting, the q plaintexts P1, P2, . . . , Pq ∈ T are assumed to be mutually independent
and uniformly distributed. The random oracle is evaluated in each of these q points,
outputting Ci = O(Pi) for i = 1, . . . , q. We denote L = T × T and Li = (Pi,O(Pi)) =
(Pi, Ci) ∈ L for i = 1, 2, . . . , q the resulting samples that are finally submitted to the
distinguisher. This situation is represented on Figure 8.1.

Under hypothesis H0, we note that for all ` = (p, c) ∈ L and L = (P,O(P ))
where P ∈ T is uniformly distributed,

Pr[L = `] = Pr[P = p,O(p) = c] = Pr[P = p]Pr[O(p) = c] =
1
|T |2 =

1
|L| ,

where the probabilities hold over the random oracle and the random plaintexts. We see
that the Li’s are uniformly distributed under hypothesis H0. The distinguishing problem
between H0 : O ← C? and H1 : O ← C can now be turned into a new equivalent one, in
which the two hypotheses are H0 : P̃ = Ũ and H1 : P̃ ∈ D̃, where

• P̃ is the distribution of (P,O(P )),

• Ũ is the uniform distribution over L, and

• D̃ = {P̃1, P̃2, . . . , P̃|K|} is a set of |K| distributions over L, where P̃k is the distri-
bution of L = (P, Ck(P )) when P is uniformly distributed.

This situation exactly corresponds to the composite hypothesis testing problem studied
in Section 6.8.

For practical reasons we will exclusively focus on projection-based distinguish-
ers which reduce the sample space by restricting the information kept about each plain-
text and each ciphertext. Similarly to what was introduced in Section 7.2 in the case
of distinguishers between random sources, projection-based distinguishers between ran-
dom oracles reduce the sample space by means of projections. Let X and Y be two
finite sets (the cardinalities of which being typically much smaller than |T |) and let
Z = X × Y. Note that the cardinalities of X and Y may differ. We consider two
balanced projections

ρ : T −→ X and µ : T −→ Y
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and let h : L → Z be such that h = (ρ, µ). We let P be the distribution of h(L)
when L ∼ P̃, and respectively denote U and Pk the possible values of this distribution
when P̃ = Ũ and P̃ = P̃k respectively (note that since h is balanced and since Ũ is
uniform, then U is uniform too). As the adversary does not know the key k, we assume
that the projections are the same for all possible values of k. For the same reason, we
also assume that the decision rule is the same in all cases. The original distinguishing
problem between H0 : O ← C? and H1 : O ← C now reads

H0 : P = U against H1 : P ∈ D,

where

• P is the distribution of h(L) = (ρ(P ), µ(O(P ))),

• U is the uniform distribution over Z = X × Y,

• D = {P1, P2, . . . ,P|K|} is a set of |K| distributions over Z, where Pk is the distri-
bution of (ρ(P ), µ(Ck(P ))) when P is uniformly distributed.

According to Theorem 6.4, the best (asymptotic) q-limited distinguisher is in that case
defined by the acceptance region Π?

q = Π? ∩ Pq where

Π? = {P ∈ P : min
1≤k≤|K|

Lk(P) ≤ 0} with Lk(P) =
∑

z∈Z
P[z] log

1
|Z|Pk[z]

.

8.2 Cryptanalysis Complexity by means of Transition and

Bias Matrices

Definition 8.1 Let T be a finite set and O : T → T be an oracle on that set. Let X
and Y be two finite sets, such that |X | , |Y| < |T |, and let ρ : T −→ X and µ : T −→ Y
be two balanced projections. The transition matrix of O with respect to the projections
ρ, µ is the X × Y matrix Tρ,µ defined by

[Tρ,µ]x,y = Pr[µ(O(P )) = y|P ← ρ−1(x)]

for all (x, y) ∈ X × Y.

Considering the hypothesis testing problem described in the previous section,
we note that the distribution of each Zi = (Xi, Yi) = (ρ(Pi), µ (O (Pi))) can be expressed
by means of the transition matrix Tρ,µ of the random oracle under both hypotheses H0

and H1. Indeed, for P ∈ {U,P1, . . . , P|K|} and z = (x, y) ∈ Z we have

P[z] = Pr[µ(O(P )) = y|ρ(P ) = x]Pr[ρ(P ) = x] =
[Tρ,µ]x,y

|X | . (8.1)
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Since U is the uniform distribution, the transition matrix under hypothesis H0 is a
uniform matrix that we denote by U, where for all (x, y) ∈ X × Y we have

[U]x,y =
1
|Y| . (8.2)

We denote by Tρ,µ
k the transition matrix corresponding to Pk.

Definition 8.2 Let T be a finite set and O : T → T be an oracle on that set. Let X
and Y be two finite sets, such that |X | , |Y| < |T |, and let ρ : T −→ X and µ : T −→ Y
be two balanced projections. The bias matrix of O with respect to the projections ρ, µ is
the X × Y matrix Bρ,µ defined by

Bρ,µ = Tρ,µ −U,

where Tρ,µ is the transition matrix of O with respect to the projections ρ µ and where
U is the X × Y matrix such that [U]x,y = 1

|Y| for all (x, y) ∈ X × Y.

The following lemma shows how the bias matrix relates to the squared Eu-
clidean imbalance

Lemma 8.1 Let T and K be two finite sets and C be a block cipher over the text
space T and the key space K. Let k ∈ K. Let X and Y be two finite sets, such that
|X | , |Y| < |L|, and let ρ : T −→ X and µ : T −→ Y be two balanced projections. Let
Bρ,µ

k be the bias matrix of Ck with respect to ρ and µ and let Pk be the distribution of
(ρ(P ), µ(Ck(P ))) ∈ X × Y, where P ∈ T is uniformly distributed. Then

∆(Pk) =
|Y|
|X |‖B

ρ,µ
k ‖22.

Proof. Denoting by Tρ,µ
k the transition matrix of Ck with respect to ρ and µ, we have

according to Definition 6.10

∆(Pk) = |X | |Y|
∑
x,y

(
Pk[x, y]− 1

|X | |Y|
)2

=
|Y|
|X |

∑
x,y

(
[Tρ,µ

k ]x,y − 1
|Y|

)2

since Pk[x, y] = [Tρ,µ
k ]x,y

|X | as noted in (8.1).

The following result is a direct implication of the previous lemma and of Heuris-
tic 6.3. It leads to the conclusion that 8 ln 2

mini ∆(Pi)
samples are sufficient to distinguish P

from the uniform distribution (see page 56).

Heuristic 8.1 Let T and K be two finite sets and C be a block cipher over the text
space T and the key space K. Let X and Y be two finite sets, such that |X | , |Y| < |T |,
and let ρ : T −→ X and µ : T −→ Y be two balanced projections. For all k ∈ K, let
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Bρ,µ
k be the bias matrix of Ck with respect to ρ and µ. Assuming that ‖Bρ,µ

k ‖2 ¿ 1, the
q-limited projection-based distinguisher between H0 : O ← C? and H1 : O ← C based
on the projections ρ and µ reaches a non-negligible advantage when

q =
|X |
|Y|

8 ln 2
min

1≤k≤|K|
‖Bρ,µ

k ‖22
. (8.3)

This heuristic tells us what is the approximate number of queries required to
reach a non-negligible advantage. Since the key space can be assumed to be rather large,
it is impossible in general to evaluate the right-hand side of (8.3). In certain cases, it
might be possible to reduce the min for all keys to one running over equivalence classes
of bias matrices (where two such matrices would be equivalent whenever their respective
Euclidean norm are equal). The most radical assumption arises when one assumes that
there is only one equivalence class.

Definition 8.3 (Hypothesis of stochastic equivalence) Under the notations of
Definition 8.2, the hypothesis of stochastic equivalence states that any pair of keys k, k′ ∈
K we can write

‖Bρ,µ
k ‖2 ≈ ‖Bρ,µ

k′ ‖2.

This assumption was initially formalized by Lai in the scope of differential
cryptanalysis (see [94, 96]). Under this assumption, we see that (8.3) can be approxi-
mated by

q =
|X |
|Y|

8 ln 2
‖Bρ,µ

k ‖22
for any k ∈ K. Similarly to what we did in Definition 7.4 for probability distributions,
we can define the Fourier transform B̂ of a bias matrix B.

Definition 8.4 Let n and m be two positive integers, let X = {0, 1}n and Y = {0, 1}m.
Let B be a 2n× 2m bias matrix indexed over X ×Y. The Fourier transform of B is the
2n × 2m matrix B̂ defined by

[B̂]u,v =
∑

(x,y)∈X×Y
(−1)u•x⊕v•y[B]x,y (8.4)

for all (u, v) ∈ X × Y.

Lemma 8.2 Under the notations of Definition 8.4 we have

[B]x,y =
1

|X | |Y|
∑

(u,v)∈X×Y
(−1)u•x⊕v•y[B̂]u,v. (8.5)
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Proof. Starting from the right-hand side of (8.5) and plugging (8.4) in,

1
|X | |Y|

∑

(u,v)∈X×Y
(−1)u•x⊕v•y[B̂]u,v

=
1

|X | |Y|
∑

(u,v)∈X×Y
(−1)u•x⊕v•y

∑

(x′,y′)∈X×Y
(−1)u•x′⊕v•y′ [B]x′,y′

=
1

|X | |Y|
∑

(x′,y′)∈X×Y
[B]x′,y′

∑

(u,v)∈X×Y
(−1)u•(x⊕x′)⊕v•(y⊕y′)

=
∑

(x′,y′)∈X×Y
[B]x′,y′1x=x′1y=y′

= [B]x,y.

The next proposition can be compared to Parseval’s Theorem and relates the
Euclidean norm of a bias matrix to that of its Fourier transform.

Proposition 8.1 Let n and m be two positive integers, let X = {0, 1}n and Y = {0, 1}m.
Let B be a 2n × 2m bias matrix indexed over X × Y. The Euclidean norms of B and
that of its Fourier transform B̂ are related by

‖B‖22 =
1

|X | |Y|‖B̂‖
2
2.

Proof. By definition we have

‖B̂‖22 =
∑
u,v

(∑
x,y

(−1)u•x⊕v•y[B]x,y

) 
∑

x′,y′
(−1)u•x′⊕v•y′ [B]x′,y′




=
∑

x,y,x′,y′
[B]x,y[B]x′,y′

∑
u,v

(−1)u•(x⊕x′)⊕v•(y⊕y′)

= |X | |Y|
∑

x,y,x′,y′
[B]x,y[B]x′,y′1x=x′1y=y′

= |X | |Y|
∑
x,y

[B]2x,y = |X | |Y| ‖B‖22

Proposition 8.1 together with Lemma 8.1 show that

∆(P) =
1
|X |2 ‖B̂

ρ,µ‖22,
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using the notations of the lemma.

Example 8.1 We consider a block cipher C defined over the text space T = {0, 1}N (for
some positive integer N) and key space K, and two linear balanced Boolean projections

ρ, µ : {0, 1}N → {0, 1}.

A projection-based distinguisher based on these projections exactly corresponds to what
is known as a (classical) linear distinguisher on the block cipher. It is easy to see that
the bias matrix of Ck (for some k ∈ K) can be written as

Bρ,µ
k =

(
ε −ε
−ε ε

)

where ε is a real value (which exactly corresponds to the bias of Matsui’s linear expres-
sions). We have ‖Bρ,µ

k ‖22 = 4ε2. Under the hypothesis of stochastic equivalence (see
Definition 8.3), it is easy to see that the bias matrix of Ck′ (for k′ 6= k) is either equal
to that of Ck or such that

Bρ,µ
k′ =

(−ε ε
ε −ε

)
.

According to Heuristic 8.1, we see that a linear distinguisher reaches a non-negligible
advantage when

q =
2 ln 2
ε2

which (up to a constant) is a well accepted result in linear cryptanalysis [110,111].

8.3 Piling-up Transition Matrices

A distinguishing attack on an iterated cipher is practical on the condition
that the cryptanalyst knows a transition matrix spanning several rounds. In practice,
she derives a transition matrix on each round and, provided that the projections were
chosen carefully, pile them in order to obtain a transition matrix on several rounds of
the cipher.

We consider the scenario where a block cipher C is made of two rounds, which
we assume to have the same structure to simplify the notations. In other words C =
{c′ ◦ c′′ : c′, c′′ ∈ R}, where R is a set of permutations on the text space T and key space
K. With our notations, the key space of the block cipher C is K2. We consider three
balanced projections ρ : T → X , µ : T → W, and φ : T → Y, respectively applied to
the input of the first round Rk1 , on the input of the second round Rk2 , and on the output
of the block cipher Ck, where k = (k1, k2). We respectively denote by P1, P2, and P3

the input of Rk1 , the input of Rk2 , and the output of Ck. Finally the random variables
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P1
ρ //

Rk1

²²

X

Tρ,µ
1

²²
P2

µ //

Rk2

²²

W

Tµ,φ
2

²²
P3

φ // Y

Figure 8.2: A commutative diagram illustrating how to pile the transition matrices on
a two rounds iterated block cipher

X, W , and Y respectively denote ρ(P1), µ(P2), and φ(P3). With these notations, the
respective transition matrices of Rk1 , Rk2 , and Ck are defined by

[
Tρ,µ

k1

]
x,w

= Pr[W = w|X = x], [Tµ,φ
k2

]w,y = Pr[Y = y|W = w],

and [Tρ,φ
k ]x,y = Pr[Y = y|X = x].

This situation is represented on Figure 8.2. Note that we use a representation which
is very similar to Wagner’s unified view of block cipher cryptanalysis commutative
diagrams [163].

Definition 8.5 A sequence X1, X2, X3 . . . of random variables taking values in some
finite set X has the Markov property if for all x1, x2, . . . in X and all positive integer n
we have

Pr[Xn+1 = xn+1|Xn = xn, . . . , X1 = x1] = Pr[Xn+1 = xn+1|Xn = xn].

In that case, the sequence X1, X2, X3 . . . is a Markov chain and is denoted X1 ↔ X2 ↔
X3 ↔ . . .

Proposition 8.2 Let X , W, and Y be three finite sets and X ∈ X , W ∈ W, and Y ∈ Y
be three uniformly distributed random variables defined on these sets such that

X ↔W ↔ Y

is a Markov chain. Let T1 be the |X | × |W| transition matrix defined by [T1]x,w =
Pr[W = w|X = x] and T2 be the |W|×|Y| transition matrix defined by [T2]w,y = Pr[Y =
y|W = w]. The |X | × |Y| transition matrix T defined by [T]x,y = Pr[Y = y|X = x]
verifies

T = T1 ×T2.

Proof. Successively using the law of total probability, the fact that the random variables
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are uniformly distributed, and the Markovian property of X ↔W ↔ Y , we have

[T]x,y =
∑

w∈W
Pr[Y = y|X = x,W = w]Pr[W = w|X = x]

=
∑

w∈W
Pr[Y = y|W = w]Pr[W = w|X = x]

=
∑

w∈W
[T1]x,w[T2]w,y.

In what follows, we consider the idealistic situation where the random variables
X, Y , and W representing the reduced samples form a Markov chain as in Proposi-
tion 8.2. Clearly, when the keys k1 and k2 are fixed in the situation described on
Figure 8.2, then P1 ↔ P2 ↔ P3 is a Markov chain. Consequently, if ρ, µ, and φ are the
identity (and thus, do not reduce the sample space at all), then this is also the case for
X ↔W ↔ Y . Yet, the Markovian property of X, Y , and Y is not guaranteed as soon
as the projections reduce the sample space.

Lemma 8.3 Under the notations and assumptions of Proposition 8.2, the bias matrices
B1, B2, and B respectively corresponding to the transition matrices T1, T2, and T
verify

B = B1 ×B2 and B̂ =
1
|W|B̂1 × B̂2.

Therefore

‖B‖2 ≤ ‖B1‖2‖B2‖2 (8.6)

with equality if, and only if we can write [B1]x,w = αxγw and [B2]w,y = γwβy for some
α ∈ R|X |, β ∈ R|Y|, and γ ∈ R|W|.

Proof. As T = T1 ×T2, we have

[B]x,y = [T]x,y − 1
|Y| =

∑

w∈W

(
[B1]x,w +

1
|W|

) (
[B2]w,y +

1
|Y|

)
− 1
|Y| .

As
∑

w [B1]x,w = 0, we obtain [B]x,y = [B1 ×B2]x,y + 1
|W|

∑
w [B2]w,y. Since W and Y

are uniformly distributed
∑

w∈W [B2]w,y = 0, which proves that B = B1 × B2. We
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also have
[
B̂1 × B̂2

]
u,v

=
∑

a∈W

[
B̂1

]
u,a

[
B̂2

]
a,v

=
∑

(x,w)∈X×W
(w′,y)∈W×Y

(−1)u•x⊕v•y [B1]x,w [B2]w′,y
∑

a∈W
(−1)a•(w⊕w′)

= |W|
∑

(x,y)∈X×Y
(−1)u•x⊕v•y

∑

w∈W
[B1]x,w [B2]w,y

= |W|
∑

(x,y)∈X×Y
(−1)u•x⊕v•y [B]x,y

= |W|
[
B̂

]
u,v

,

which proves that B̂ = 1
|W|B̂1 × B̂2. Finally, from the Cauchy-Schwarz inequality:

‖B1 ×B2‖22 =
∑

(x,y)∈X×Y

( ∑

w∈W
[B1]x,w [B2]w,y

)2

≤
∑

(x,y)∈X×Y

( ∑

w∈W
[B1]

2
x,w

)( ∑

w′∈W
[B2]

2
w′,y

)

= ‖B1‖22‖B2‖22,

with equality if, and only if, for all (x, y) ∈ X × Y there exists some λx,y such that
[B1]x,w = λx,y [B2]w,y, so that [B1]x,w = λx,0 [B2]w,0 = αxγw. Taking βy equal to
α0/λ0,y when λ0,y 6= 0 and to zero otherwise leads to the announced result.

From Lemma 8.3 we can deduce the original version of the piling-up lemma.

Corollary 8.1 Under the notations and assumptions of Lemma 8.3 and assuming that
X = Y =W = {0, 1}, there exists ε1, ε2 ∈ R such that

B1 =
[

ε1 −ε1
−ε1 ε1

]
and B2 =

[
ε2 −ε2
−ε2 ε2

]

so that (8.6) is actually an equality:

‖B‖2 = ‖B1‖2‖B2‖2.

How to find the projections ρ, µ, and φ on larger spaces exhibiting such a
Markovian property for a given block cipher in the most general case remains however
an open question to us. Yet, there are practical cases where this property holds, namely
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when considering Markov ciphers (see Definition 8.8) and well chosen homomorphic
projections. This is in particular the case of the characters (over Abelian groups) that
we use in Section 8.4 to generalize linear cryptanalysis. If the projections satisfy the
Markovian property, we obtain under the natural notations implied by Figure 8.2 that

‖Bρ,φ
k ‖22 ≤ ‖Bρ,µ

k1
‖22‖Bµ,φ

k2
‖22

which shows that one needs at least

q =
8 ln 2

‖Bρ,µ
k1
‖22‖Bµ,φ

k2
‖22

samples to distinguish C from the perfect cipher. In the case of our generalization of
linear cryptanalysis, we will obtain a more precise approximate of q.

8.4 Generalized Linear Cryptanalysis of Block Ciphers

We will now consider a particular type of projection-based distinguishers,
namely, generalized linear distinguishers. These distinguishers reduce the sample space
by means of linear projections, where the linearity relates to the group law defined on
the text space. In a classical linear cryptanalysis of a block cipher C, the text space
is T = {0, 1}n (for some positive integer n) and the group law is the exclusive-or op-
eration. In that case, the adversary typically runs over q plaintext/ciphertext pairs
(Pi,O(Pi)), for i = 1, 2, . . . , q, and add the value of a •Pi⊕ b •O(Pi) to a counter, where
a and b are input/output masks defined on the text space T . The adversary eventually
guesses whether the generator is implementing an instance of the block cipher or not
by measuring the bias of the counter with respect to q/2 (which is the expected value
of the counter in the case where O is the perfect cipher). By choosing the masks with
care, the bias may be large when O = Ck for some key k. In this situation, the linear
probability

LPa,b(Ck) = (2 · PrP (a • P ⊕ b • Ck(P ) = 0)− 1)2 =
∣∣∣E((−1)a•P⊕b•Ck(P ))

∣∣∣
2

estimates the efficiency of the attack against Ck. We will now see how to generalize this
metric to arbitrary group structures.

As in Section 8.1, we consider the plaintext/ciphertext pairs as random vari-
ables in T 2. Namely, we let L = (P,O(P )) where P is uniformly distributed and denote
by P̃ its distribution. This turns the distinguish problem between random oracles in a
distinguishing problem between random sources. We let G1 and G2 denote two group
structures on T , let G = G1 × G2 be the group product, and consider the characters
ρ ∈ Ĝ1 and µ ∈ Ĝ2. Finally, we let χ ∈ Ĝ be the character defined by χ(a, b) = ρ(a)µ(b).
Following Definition 7.7 and the discussion of Section 7.6, we know that our generalized
version of linear cryptanalysis on random sources is based on

LPχ(P̃) = LP(χ(P,O(P ))) = LP (ρ(P )µ(O(P ))) = |E (ρ(P )µ(O(P )))|2 ,
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where P ∈ T is uniformly distributed. It seems therefore natural to extend the classical
linear probability for block ciphers as follows.

Definition 8.6 Let T and K be two finite sets and C be a block cipher over the text
space T and the key space K. Let G1 and G2 be two group structures over the same set
T . For all group characters ρ ∈ Ĝ1 and µ ∈ Ĝ2, the linear probability of C over T with
respect to ρ and µ is defined by

LPρ,µ(Ck) =
∣∣∣EP∈UT

(
ρ(P )µ(Ck(P ))

)∣∣∣
2
.

We denote the expected linear probability over all keys by

ELPρ,µ(C) = EK(LPρ,µ(CK)) =
1
|K|

∑

k∈K
LPρ,µ(Ck).

We note that in the particular case where T = {0, 1}n and the group law
considered is the exclusive-or operation, then there always exists a and b in T such that
ρ(x) = (−1)a•x and µ(x) = (−1)b•x. In that case, the previous definition rewrites

LPρ,µ(Ck) =
∣∣EP∈UT

(
(−1)a•P (−1)b•Ck(P )

)∣∣2 = LPa,b(Ck).

If P̃k denotes the distribution of (P, Ck(P )) for a uniformly distributed P , we
have by construction

LPχ(P̃k) = |E (ρ(P )µ(Ck(P )))|2 = LPρ,µ(Ck).

Therefore, we can deduce from Lemma 7.5 that an optimal linear distinguisher between
H0 : O ← C? and H1 : O ← C based on the characters ρ and µ should accept H1

whenever
max

h
N[h|Hq] ≥ q log(1− ε)

log(1− ε)− log(1 + (d− 1)ε)
, (8.7)

where Hi = ρ(Pi)µ(O(Pi)) and ε2 = LPρ,µ(Ck). The optimal linear distinguisher
should thus accept H1 when the maximum value of the relative frequency of the plain-
text/ciphertext pairs exceeds a threshold which is completely determined by the linear
probability of Ck with respect to chosen characters. Since the key k is unknown, a
distinguisher will in practice choose ε such that

ε2 = ELPρ,µ(C).

Note that assuming the hypothesis of stochastic equivalence (see Definition 8.3) also
lead to this strategy since in that case one assumes that

LPρ,µ(Ck) ≈ LPρ,µ(Ck′)

for all k 6= k′, and thus LPρ,µ(Ck) ≈ ELPρ,µ(C) for all k ∈ K.
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We now deduce from Heuristic 7.2 that the distinguisher based on (8.7) reaches
a non-negligible advantage when

q =
8 ln 2

(d− 1)ELPρ,µ(C)

where d is the order of the character χ = (ρ, µ), which is the least common multiple of
the order of ρ and of the order of µ. We deduce the following heuristic on which we will
rely to compute the attack complexities against TOY100 and against SAFER.

Heuristic 8.2 Let T and K be two finite sets and C be a block cipher over the text
space T and the key space K. Let C? be the perfect cipher over T . Let G1 and G2 be
two group structures over the same set T . Let ρ ∈ Ĝ1 and µ ∈ Ĝ2 be two characters of
order d1 and d2 respectively. Letting ε2 = ELPρ,µ(C), the best q-limited distinguisher
between H0 : O ← C? and H1 : O ← C based on the characters ρ and µ should accept
H1 if, and only if

max
h

N[h|Hq] ≥ q log(1− ε)
log(1− ε)− log(1 + (d− 1)ε)

is verified, where Hi = ρ(Pi)µ(O(Pi)) for each sample Pi, with i = 1, . . . , q, and where
d is the least common multiple of the order of ρ and of the order of µ. Assuming that
ELPρ,µ(C)¿ 1, the distinguisher reaches a non-negligible advantage when

q =
8 ln 2

(d− 1)ELPρ,µ(C)
.

Fourier Transforms and Links with Differential Cryptanalysis

Differential cryptanalysis over arbitrary groups was formalized by Lai, Massey,
and Murphy in [97]. The complexity of this attack relates to the differential probability.

Definition 8.7 Let T and K be two finite sets and C be a block cipher over the text
space T and the key space K. Let ¢ and ⊗ be two group laws on T and let a, b ∈ T
and k ∈ K. The differential probability of Ck with respect to the input difference a and
output difference b is

DPa,b(Ck) = Pr[Ck(P ¢ a) = Ck(P )⊗ b],

where the probability holds over the uniform distribution of the plaintext P ∈ T . The
expected differential probability of C with respect to the same masks is

EDPa,b(C) = EK (DPa,b(CK)) =
1
|K|

∑

k∈K
DPa,b(Ck).
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By construction, we know that the linear probability verifies

LPρ,µ(Ck) = LPχ(P̃k), (8.8)

where P̃k denotes the distribution of (P, Ck(P )) and χ(a, b) = ρ(a)µ(b). Consequently,
the inverse Fourier transform of LPρ,µ(Ck) at point (a, b) ∈ G1 × G2 is equal to
L̂P(a,b)(P̃k), which leads to

L̂Pa,b(Ck) =
1
|T |2

∑

(ρ,µ)∈bG1×bG2

LPρ,µ(Ck)ρ(a)µ(b) (8.9)

We have a similar property for the differential probability since, with the same
notations, we have

DP(a,b)(P̃k) = PrP,P ′ [(P ′, Ck(P ′)) = (P, Ck(P )) · (a, b)]
= PrP,P ′ [P ′ = P ¢ a,Ck(P ′) = Ck(P )⊗ b]
= PrP,P ′ [P ′ = P ¢ a,Ck(P ¢ a) = Ck(P )⊗ b]

=
1
|T |PrP [Ck(P ¢ a) = Ck(P )⊗ b]

and thus
DP(a,b)(P̃k) =

1
|T |DPa,b(Ck). (8.10)

The Fourier transform of DPa,b(Ck) at point χ ∈ Ĝ (where G = G1 × G2) is equal to
|T | D̂Pχ(P̃k) which leads to

D̂Pρ,µ(Ck) =
∑

(a,b)∈G1×G2

DPa,b(Ck)ρ(a)µ(b). (8.11)

Based on Lemma 7.11 which shows the link between linear and differential
probabilities for random sources, we can reformulates this link between the correspond-
ing metrics for linear and differential distinguishers on block ciphers (as in [32]).

Lemma 8.4 Let T and K be two finite sets and C be a block cipher over the text space
T and key space K. Let G1 and G2 be two group structures over T and χ ∈ Ĝ1 and
ρ ∈ Ĝ2. Let (ρ, µ) ∈ Ĝ1 × Ĝ2 and (a, b) ∈ G1 ×G2. For all k ∈ K, the inverse Fourier
transform of LPρ,µ(Ck) at point (a, b) is

L̂Pa,b(Ck) =
1
|T |DPa,b(Ck) and thus ÊLPa,b(C) =

1
|T |EDPa,b(C). (8.12)

Conversely, the Fourier transform of DPa,b(Ck) at the point (ρ, µ) is

D̂Pρ,µ(Ck) = |T |LPρ,µ(Ck) and thus ÊDPρ,µ(C) = |T |ELPρ,µ(C). (8.13)
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Proof. Denoting P̃k the distribution of (P, Ck(P )) where P ∈ T is uniformly distributed,
it follows from Lemma 7.11 and (8.10) that

D̂Pρ,µ(Ck) = |T | D̂Pχ(P̃) = |T |LPχ(P̃) = |T |LPρ,µ(Ck).

The equality for the mean follows from the fact that

EK

(
D̂Pρ,µ(CK)

)
=

1
|K|

∑

k∈K
D̂Pρ,µ(Ck)

=
1
|K|

∑

k∈K

∑

a,b

DPa,b(Ck)ρ(a)µ(b)

=
∑

a,b

EDPa,b(C)ρ(a)µ(b)

= ÊDPρ,µ(C).

Substituting D̂Pρ,µ(CK) by |T |LPρ,µ(CK) in the left-hand side of the previous equation
leads to (8.13).

Conversely, based on (8.8) and on the same lemma, we similarly obtain that

L̂Pa,b(Ck) = L̂Pa,b(P̃) = DP(a,b)(P̃) =
1
|T |DPa,b(Ck).

Proving the rest of (8.12) can be done in a similar way than what we did for the mean
of the differential probability.

In the case the block cipher considered is a Markov cipher [97] (which is the
case of almost any iterated block cipher when the round keys are mutually independent),
then it is easy to relate the expected differential probability on the block cipher to the
expected differential probability over the individual rounds [97].

Definition 8.8 Let T and K be two finite sets. Let ¢ and ⊗ be two group laws on T .
A block cipher C over the text space T and the key space K is a Markov cipher if for
any a, b, p ∈ T we have

EDPa,b(C) = PrK [CK(p ¢ a) = CK(p)⊗ b].

where the probability holds over the uniformly distributed key K ∈ K.

Theorem 8.1 Let T and K be two finite sets and C(1), C(2), . . . ,C(r) be r > 1 mutually
independent Markov ciphers on the text space T and the key space K. For any input
input/output differences w0, wr ∈ T we have

EDPw0,wr

(
C(r) ◦ · · · ◦ C(2) ◦ C(1)

)
=

∑
w1,...,wr−1

r∏

i=1

EDPwi−1,wi

(
C(i)

)
.
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The link between the linear and differential probabilities given in Lemma 8.4
allows to deduce an iterative formula for linear probabilities over iterated cipher similar
to the well known expression given by Theorem 8.1 for the differential probabilities.
This corresponds to what is known as Nyberg’s linear hull effect [125].

Theorem 8.2 Let T and K be two finite sets. Let G0 . . . ,Gr be r + 1 Abelian group
structures over T and let C = C(r) ◦ · · · ◦ C(1) be a product cipher of r independent
Markov ciphers C(i) : Gi−1 −→ Gi. For any χ0 ∈ Ĝ0 and χr ∈ Ĝr we have

ELPχ0,χr (C) =
∑

χ1∈bG1

· · ·
∑

χr−1∈bGr−1

r∏

i=1

ELPχi−1,χi

(
C(i)

)
.

Proof. We first prove the theorem when r = 2. From Lemma 8.4 we have

ELPχ0,χ2(C) =
1
|T | ÊDPχ0,χ2(C).

From (8.11), the right-hand side of the previous equation is equal to

1
|T |

∑
w0,w2

EDPw0,w2(C)χ0(w0)χ2(w2).

Since we consider independent Markov ciphers, Theorem 8.1 shows that the last equa-
tion is equal to

1
|T |

∑
w0,w1.w2

EDPw0,w1(C
(1))EDPw1,w2(C

(2))χ0(w0)χ2(w2).

Applying Lemma 8.4 shows that this expression is equal to

|T |
∑

w0,w1.w2

ÊLPw0,w1(C
(1))ÊLPw1,w2(C

(2))χ0(w0)χ2(w2). (8.14)

According to (8.9) we have by definition:

ÊLPw0,w1(C
(1)) =

1
|T |2

∑

(ρ0,χ1)∈bG0×bG1

ELPρ0,χ1(C
(1))ρ0(w0)χ1(w1)

ÊLPw1,w2(C
(2)) =

1
|T |2

∑

(ρ1,µ2)∈bG1×bG2

ELPρ1,µ2(C
(2))ρ1(w1)µ2(w2)

Plugging these values in (8.14) and reducing the result using the orthogonal relations
given in Lemma 7.4 leads to

ELPχ0,χ2(C) =
∑

χ1∈bG1

ELPχ0,χ1(C
(1))ELPχ1,χ2(C

(2)),
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which exactly corresponds to the linear hull formula for r = 2. To obtain the result for
any r > 2, it suffices to apply the previous formula r − 1 times in a recursive way on
C = C(r) ◦ · · · ◦ C(2) ◦ C(1).

As direct computation of the expected linear probability on a realistic instance
of a block cipher is not practical, the cryptanalyst typically follows a bottom-up ap-
proach, in which she first computes the linear probability of small building blocks of
the cipher and then extends the result to the whole construction. In the remaining of
this section, we study several typical building blocks on which block ciphers are often
based.

A Toolbox for the Generalized Linear Cryptanalysis

We can look at a block cipher as a circuit made of building blocks and in which
every edge is attached to a specific group. From this point of view, a linear characteristic
is a family mapping every edge to one character of the attached group. The building
blocks we will consider are represented on Figure 8.3. If χ1 and χ2 are characters on
G1 and G2 respectively, we denote by χ1‖χ2 : G1 × G2 → C× the character mapping
(a, b) ∈ G1 × G2 on χ1(a)χ2(b). We assume that the cryptanalyst constructs a linear
characteristic in a reversed way [16] (i.e., starting from the end of the block cipher
towards the beginning), her objective being to carefully choose the characters in order
to maximize the linear probability on each individual building block.
Building Block (a): We consider a duplicate gate such that a, b, c ∈ G and a = b = c.
Let χ1, χ2 be two characters defined over G so that χ1‖χ2 is a character on the output of
the gate, we have (by definition) χ1(b)χ2(c) = χ1(a)χ2(a) = χ1χ2(a). Simply denoting
(a) the duplicate gate, we have

LPχ1χ2,χ1‖χ2
((a)) = 1,

so that χ1χ2 is an appropriate character on the input of the gate.
Building Block (b): We consider a layer that applies a group homomorphism from
G = G1×· · ·×Gm to H = H1×· · ·×Hn. We denote the homomorphism by hom, the m
inputs as a1, a2, . . . , am and the n outputs b1, b2, . . . , bn, so that hom(a1, a2, . . . , am) =
(b1, b2, . . . , bn). Given n characters χi on Hi, i = 1, . . . , n, we have χ(b1, . . . , bn) =

a

b c

hom

a1 a2 am

b1 b2 bm

a

b

k+ S

a

b

(a) (b) (c) (d)

Figure 8.3: Typical Building Blocks of Block Ciphers
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S11 S12 S13 S1n

S21 S22 S23 S2n

hom

+ + + +

Sr1 Sr2 Sr3 Srn

+ + + +

+ + + +

hom

+ + + +

k11 k12 k13 k1n

k21 k22 k23 k2n

kr1 kr2 kr3 krn

k(r+1)1 k(r+1)2 k(r+1)3 k(r+1)n

X 21 X 22 X 23 X2n

X r1 X r2 X r3 Xrn

X r1 X r2 X r3 Xrn

Figure 8.4: A Typical Substitution-Permutation Network with r Rounds

(χ ◦ hom)(a1, . . . , am) for χ = χ1‖ · · · ‖χn. As χ ◦ hom is still a character on G we
obtain LPχ◦hom,χ((b)) = 1. Note that we do have χ ◦ hom = χ′1‖ · · · ‖χ′m for some
(χ′1, . . . , χ

′
m) ∈ Ĝ1 × · · · × Ĝm, so that χ′i is an appropriate character for ai.

Building Block (c): Given hom(a) = a + k on a given group G (with additive
notation), we have χ(b) = χ(a)χ(k). Since k is constant, LPχ,χ((c)) = 1, so that χ is
an appropriate character on the input.
Building Block (d): When considering a (non-homomorphic) permutation S, the
linear probability LPρ,µ(S) should be computed by considering the substitution table
of S.

Consider for example a typical substitution-permutation network C as shown
on Figure 8.4. By piling all relations up on a typical substitution-permutation network
C, we obtain a relation of the form

χ(P )ρ(C(P )) =


∏

i,j

χi,j(Xi,j)ρi,j(Si,j(Xi,j))
)

×


∏

i,j

χi,j(ki,j)




where the first product runs over all building blocks of type (d) and the second over
building blocks of type (c). Hence, by making the heuristic approximation of indepen-
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dence of all Xi’s (which is commonly done in classical linear cryptanalysis), we obtain
that

ELPχ,ρ(C) ≈
∏

i,j

LPχi,j ,ρi,j (Si,j).

This is the classical single-path linear characteristic. Provided that we can lower bound
(e.g., by exploiting the properties of the homeomorphism) the number of active substi-
tution boxes (i.e., boxes with non-trivial input/output masks) by b and that we have

max
i,j

LPmax(Si,j) ≤ λ

we obtain that ELPmax(C) is heuristically bounded by λb for single-path characteristics.
We can obtain an exact formula for ELPχ,ρ(C) by using linear hulls and assuming that
all the subkeys are mutually independent, since we are indeed considering a Markov
cipher here, so that Theorem 8.2 applies.

In the next section, we show how to use the tools presented so far to build and
study the security of a block cipher that encrypts blocks of decimal digits.

8.5 The Block Cipher DEAN: a Toy Example for our Gen-

eralization of Linear Cryptanalysis

We introduce DEAN18 (as for Digital Encryption Algorithm for Numbers), a
toy cipher that encrypts blocks of 18 decimal digits (which approximately corresponds
to a block size of 60 bits), which could be used to encrypt a credit-card number for
example. The structure of this toy cipher is inspired from that of the AES [41]. We
consider an R-round substitution-permutation network, each round being based on the
same structure. Blocks are represented as 3×3 arrays of elements of the additive group
Z10 × Z10. Each round successively applies to the plaintext the following operations:

• AddRoundKeys, that performs a digit-wise addition of a round key to the input
(the addition being taken modulo 10),

• SubBytes, that applies a fixed bijective substitution box S (defined in Table 8.1,
where an element (a, b) ∈ Z2

10 is represented as an integer 10·a+b ∈ {0, 1, . . . , 99})
on each 2-digit element of the array,

• ShiftRows, that shifts to the left each row of the input over a given offset (equal
to the row number, starting from 0 at the top),

• MixColumns, that multiplies each column of the input by the matrix

M =




α 1 1
1 α 1
1 1 α


 (8.15)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
27 48 46 31 63 30 91 56 47 26 10 34 8 23 78 77 80 65 71 43

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
36 72 29 79 83 7 58 95 69 74 67 35 32 59 82 14 75 99 24 87

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
16 90 76 51 28 93 50 38 25 3 13 97 55 60 49 86 57 89 62 45

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
18 37 1 6 98 68 39 17 19 20 64 44 33 40 96 2 12 41 52 85

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
81 5 0 15 54 88 92 21 84 22 53 11 4 94 42 66 70 9 61 73

Table 8.1: The fixed substitution box on Z2
10 of DEAN18.

where the multiplication of an arbitrary element (a, b) ∈ Z2
10 by α (resp. 1) is

defined1 by α · (a, b) = (a+b,−a) (resp. 1 · (a, b) = (a, b)). One can easily see that
this defines a structure on Z2

10 that is isomorphic to GF(4) × GF(25), on which
the matrix is an MDS matrix [77,150].

The branch number of the matrix multiplication is equal to 4, i.e., the total
number of non-zero elements of the input and output columns is either 0, 4 or more.
Consequently, given a non-trivial character ρ = (ρ1, ρ2, ρ3) on the output of the trans-
formation, we obtain (given that we are considering a building block of type (b)) that
the appropriate character χ = (χ1, χ2, χ3) on the input is non-trivial and that among
the six characters χ1, . . . , ρ3, at least four are non-trivial. When at least one of the six
characters is non-trivial, we say that the column is active.

Extending this result to the whole MixColumns transformation and applying
similar arguments than those used on the AES [41], one can obtain that any two rounds
characteristic (i.e., succession of three characters on the text space) has a weight lower
bounded by 4Q, where the weight is simply the number of non-trivial characters on Z2

10

among the 27 components of the three round characters and Q is the number of active
columns at the output of the first round. Similar arguments also lead to the fact that
the sum of the number of active columns at the output of the first and of the third
round of a 4-round characteristic is at least 4. Consequently, the weight of a 4-round
characteristic is at least 16.

Denoting by LPmax(S) the maximum value of LPχ,ρ(S) over pairs of non-trivial
characters, we conclude (under standard heuristic assumptions on the independence of
the output of the characters at each round) that the linear probability of a 4r-rounds
characteristic is upper-bounded by (LPmax(S))16r. Assuming that one characteristic
among the linear hull [125] is overwhelming, we conclude from Heuristic 8.2 that in the
best case (from an adversary point of view), a distinguishing attack against a 4r-round
version of our toy cipher needs q ≈ ((d−1)LPmax(S))−16r samples, where d is the order
of the linear cryptanalysis considered (i.e., d is the least common multiple of the orders
of the input and of the output characters).

For the substitution box of our toy cipher, we obtain LPmax(S) ≈ 0.069. If we
consider a generalized linear cryptanalysis of order 2, the number of samples that is nec-

1Considering the elements of Z2
10 as elements of Z10[α]/(α2−α+1) naturally leads to this definition.
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essary to attack four rounds is close to 3.8×1018 ≈ 261. We conclude that R = 8 rounds
are enough for DEAN18 to keep a high security margin (as far as linear cryptanalysis of
order 2 is concerned). If we consider instead a generalized linear cryptanalysis of order
5, the number of samples to attack 8 rounds is close to 7.78×1017 ≈ 259 so that 8 rounds
are still sufficient to resist generalized linear cryptanalysis of order 5. Finally, if we con-
sider order 10, the number of samples to attack 8 rounds drops to 4.18× 106 ≈ 222, so
that more rounds should be considered in that case. With 20 rounds for example, the
number of samples needed is 3.57× 1016 ≈ 255.

It is possible to extend the previous construction to larger blocks. As an
example, we introduce DEAN27, a toy cipher similar to DEAN18, that encrypts blocks
of 27 decimal digits (which approximately corresponds to a block size of 90 bits). The
structure of DEAN27 is the same than that of DEAN18 with some exceptions. The
blocks of DEAN27 are represented as 3× 3 arrays of element of the additive group Z3

10.
Each rounds successively applies to the plaintext the following operations:

• AddRoundKeys, that performs a digit-wise addition of a round key,

• SubBytes, that applies a fixed bijective substitution box (defined in tables D.1
and D.2 in Appendix D, where an element (a, b, c) ∈ Z2

10 is represented as an
integer 100 · a + 10 · b + c ∈ {0, 1, . . . , 999}) on each 3-digit element of the array,

• ShiftRows, which is the same than in DEAN18,

• MixColumns, that multiplies the input by the matrix M in (8.15), where the mul-
tiplication of an arbitrary element (a, b, c) ∈ Z3

10 by α (resp. 1) is defined2 by
α · (a, b, c) = (a + b, c, a) (resp. 1 · (a, b, c) = (a, b, c)). This defines a structure on
Z3

10 that is isomorphic to GF(8)×GF(125), on which the matrix is MDS.

The security analysis of DEAN27 is the same than that of DEAN18. For the
substitution box S of DEAN27, we obtain LPmax(S) ≈ 0.01 (we obtained the table
by drawing 150 tables at random, keeping the one having the smallest LPmax). If we
consider a generalized cryptanalysis of order 2 on DEAN27, the number of samples
necessary to attack four rounds is close to 1032 (which is to be compared to the size
of the code book, which is 1027). If we consider a generalized linear cryptanalysis of
order 5, the number of samples required is approximately 2.32 × 1022 for four rounds
and 5.42 × 1044 for height rounds. Finally, a successful attack against height rounds
with a linear cryptanalysis of order 10 approximately requires 2.9× 1033 samples.

8.6 A Z16
100 Generalized Linear Cryptanalysis of TOY100

In [58], Granboulan et al. introduce TOY100, a block cipher that encrypts
blocks of 32 decimal digits. The structure of TOY100 is similar to that of the AES.
An r rounds version of TOY100 is made of r− 1 identical rounds followed by a slightly

2Considering the elements of Z3
10 as elements of Z10[α]/(α3−α2−1) naturally leads to this definition.
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different final round. Each block is represented as a 4× 4 matrix A = (ai,j)i,j∈{0,...,3},
the ai,j ’s being called subblocks. Round i (for i = 1, . . . , r − 1) first adds modulo 100
a round key to the subblocks (we do not describe the key schedule here as we assume
that the round keys are mutually independent), then applies a fixed substitution box to
each resulting round key, and finally mixes the subblocks together by applying a linear
transformation. The last round replaces the diffusion layer by a modulo 100 round
key addition. The round key addition, confusion, and diffusion layers are respectively
denoted σ[K], γ, and θ. The diffusion layer applied to a block A can be represented as
a matrix product M ×A×M where

M =




1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1




and where all computations are performed modulo 100. The best attack against TOY100
presented so far is based on the generalization of linear cryptanalysis suggested in [58].
It breaks TOY100 reduced to 7 rounds with a data/time complexity of 0.66 · 1031. We
propose here a linear cryptanalysis that breaks up to 8 rounds. We first observe that
any block

A(δ) =




δ 0 100− δ 0
0 0 0 0

100− δ 0 δ 0
0 0 0 0




where δ ∈ {1, . . . , 99} is such that M × A(δ) × M = A(δ), i.e., is not changed by
the diffusion layer. We let I = {A(δ), δ = 1, . . . , 99} be the set of these 99 blocks.
Our attack against TOY100 reduced to r rounds first guesses 4 subblocks of the first
round key and 4 subblocks of the last (the positions of which exactly correspond to
the non-zero subblocks of A(δ)). This allows to peel-off the first and last layers of
substitution boxes, so that we now consider the transformation (θ ◦ γ ◦ σ[K])r−2 ◦ θ
(where it is understood that the round keys are mutually independent). For any 4× 4
input/output masks (i.e., blocks) α = (αi,j)i,j∈{1,...,4} and β = (βi,j)i,j∈{1,...,4} we let,
for any transformation C on Z16

100,

ELPα,β(C) =
∣∣EM

(
ϕα(M)ϕβ(C(M))

)∣∣2

r Lower bound on d Data/Time Complexity of the attack
maxα0,αr−2 ELPα0,αr−2 (θ ◦ γ ◦ σ[K])r−2 ◦ θ against r rounds

4 0.37 · 10−9 50 0.55 · 108

5 0.47 · 10−14 50 0.42 · 1013

6 0.66 · 10−19 50 0.31 · 1018

7 0.10 · 10−23 50 0.20 · 1023

8 0.18 · 10−28 50 0.11 · 1028

9 0.34 · 10−33 50 0.61 · 1032

Table 8.2: Complexities of the best linear cryptanalysis we obtained on reduced round
versions of TOY100.
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where
ϕα(M) = e

2πi
100

P4
i,j=1 αi,jmi,j .

Applying the linear hull [125] formula of Theorem 8.2 and the observation on the diffu-
sion layer of TOY100 we obtain that the linear probability on (θ ◦ γ)r−2 ◦ θ with input
(resp. output) masks α0 ∈ I (resp. αr−2 ∈ I) is such that

ELPα0,αr−2((θ ◦ γ◦σ[K])r−2 ◦ θ)

= ELPα0,αr−2((θ ◦ γ ◦ σ[K])r−2)

=
∑

α1∈Z4
100

· · ·
∑

αr−3∈Z4
100

r−2∏

i=1

ELPαi−1,αi(θ ◦ γ ◦ σ[K])

≥
∑

α1∈I
· · ·

∑

αr−3∈I

r−2∏

i=1

ELPαi−1,αi(θ ◦ γ ◦ σ[K])

=
∑

α1∈I
· · ·

∑

αr−3∈I

r−2∏

i=1

LPαi−1,αi(γ).

Practical computations of the previous equations are given in Table 8.2 where d denotes
the least common multiple of the orders of the input and of the output characters which
maximize the linear probability. Using an 8-round linear hull and guessing the necessary
keys on an extra round, we can thus break 9 rounds of TOY100 with data complexity
0.11·1028 (and possibly 10 rounds with a data complexity of 0.61·1032, which represents
more than half the code book).
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A Generalized Linear Cryptanalysis of SAFER K/SK

SAFER is a family of block ciphers. The first member of this family was
introduced by Massey and is called SAFER K-64 [107]. It encrypts 64-bit blocks under
64-bit keys. It is an iterated block cipher, meaning that it is made of a succession of
rounds all identical in their structure. Each round is parameterized by two 64-bit round
keys which are derived from the main 64-bit secret key using a key-schedule algorithm.
SAFER K-64 is ”byte-oriented” in the sense that the elementary operations operate on
chunks of 8 bits. Moreover, it has the particularity to use two distinct group operations
to mix key bits with text bits, namely, the exclusive-or and the addition modulo 256.
Soon after the original publication, Massey announced SAFER K-128, a block cipher
identical to SAFER K-64 (except for the recommended number of rounds) but with a
different key schedule [108] that allowed to use 128-bit keys. The first real security issue
on SAFER K/SK was pointed out by Knudsen [87] and lead Massey to update the key
schedules, announcing SAFER SK-64 and SAFER SK-128 [109].

In a joint work with Khachatrian and Kuregian, Massey proposed SAFER+ [85]
as an AES candidate. Based on the same design principle of the earlier versions of
SAFER, SAFER+ encrypts 128-bit blocks. Although SAFER+ was not among the AES
finalists, it is still widespread. For example, the E1 algorithm used during authentication
in Bluetooth is based on SAFER+. Finally, the same authors submitted SAFER + +
to the NESSIE project [86]. The main improvements of SAFER + + against SAFER+
concerns the diffusion layer, which improvements allowed to reduce the total number of
round, increasing the encryption speed.

In this section, we focus on the two first members of the SAFER family, namely
SAFER K-64 and SAFER SK-64. To the best of our knowledge, the best chosen plaintext
attacks (CPA) against these block ciphers are Wu et al. truncated differentials [164]
(which improve on previous work by Knudsen and Berson [90,91]) which break up two
6 rounds of both versions of SAFER. The best known plaintext attacks are due to
Nakahara et al. who manage to find a 3.75-round non-homomorphic linear relation [65]
with bias ε = 2−29 for certain classes of weak keys, concluding that linear cryptanaly-
sis [110,111] does not seem to be a serious threat against SAFER K.

In this section, we will apply the generalization of linear cryptanalysis intro-
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Figure 9.1: The ith encryption round function of SAFER

duced in Section 8.4, which breaks up to five rounds of SAFER K/SK. Because our
definitions of linear probabilities, linear relations, etc. differ from those used in the
classical version of linear cryptanalysis, it may seem that our results do not contra-
dict the statement that SAFER is secure against Matsui’s linear cryptanalysis (see [65]
or [119] for example). In fact, they do, as we will see for the best attacks we could find
on four rounds of SAFER K/SK.

In Section 9.1 we describe the encryption procedure of SAFER K/SK, give an
overview of the properties of the key schedules that we exploit in our attacks, and give
more details about previous cryptanalytic results. In Section 9.2 we study the main
building blocks of SAFER K/SK with respect to our generalization of linear cryptanal-
ysis. We introduce the notion of reduced hull, which simply corresponds to restrict the
full linear hull [125] (see Theorem 8.2) to some (carefully chosen) characteristics, and
explain how to build reduced hull of low weight (i.e., activating a small number of sub-
stitution boxes). In Section 9.3, we make use of the previous concepts to attack up to
five rounds of SAFER.

9.1 The SAFER Family

A Short Description of the Encryption Procedure

The encryption procedures of SAFER K-64, SAFER K-128, SAFER SK-64, and
SAFER SK-128 are almost identical. They all iterate the exact same round function, the
only difference being that the recommended number of iteration of this round function
is 6 for SAFER K-64 [107], 8 for SAFER SK-64 [109], and 10 for both 128-bit versions of
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SAFER [107,109]. The round function is represented on Figure 9.1. An r-round version
of SAFER encrypts 8 bytes of text by applying the round function r times followed by
a final mixed key addition (whose structure is identical to the first mixed key addition
layer of the round function). Each round is parameterized by two 8-byte round keys so
that a 2r + 1 round keys must be derived from the secret key.

The round function first applies a byte-wise key addition, mixing exclusive-
or’s and additions modulo 256. Then, each byte goes through a substitution box.
Two kinds of boxes are used on SAFER: x 7→ (45x mod 257) mod 256 and its inverse.
The output of the substitution box layer goes through another byte-wise key addition
before being processed by a diffusion layer made of boxes called 2-PHT and defined
by 2-PHT(a, b) = (2a + b, a + b), the addition being performed modulo 256. Denoting
x ∈ Z8

256 the input of the linear layer, the output y ∈ Z8
256 can be written as y = M×x

where

M =




8 4 4 2 4 2 2 1
4 2 2 1 4 2 2 1
4 4 2 2 2 2 1 1
2 2 1 1 2 2 1 1
4 2 4 2 2 1 2 1
2 1 2 1 2 1 2 1
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1




. (9.1)

Finally, we will adopt a special notation to denote reduced-round versions of
SAFER. We will consider each of the four round layers as one fourth of a complete
round. Consequently, a 2.5 reduced-round version of SAFER will correspond to two
full rounds followed by the first mixed key addition and substitution layer of the third
round. With these notations, the encryption procedure of SAFER K-64 is actually made
of 6.25 rounds. To be consistent with the notations of the original publications, when
we refer to a r-round version of SAFER, we actually mean a r + 0.25 reduced-round
version of SAFER.

A Very Short Description of the Key Schedules

For the sake of simplicity, we restrict to give the dependencies of each round
key byte with respect to the main secret key instead of describing the key schedules of
the various versions of SAFER.

• SAFER K-64: The jth round key byte (1 ≤ j ≤ 8) only depends on the jth main
secret key byte. For example, guessing the third byte of the main secret key allows
to derive the third byte of each round key.

• SAFER SK-64: The jth byte (1 ≤ j ≤ 8) of round key number i (1 ≤ i ≤ 2r + 1),
depends on the `th byte of the secret key, where ` = (i + j − 2) mod 9 + 1 and
where the 9th byte of the secret key is simply the exclusive-or of its previous 8
bytes.
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Type # rounds Type of the Attack Time Plaintexts Reference

SAFER K-64 3 KPA/Weak keys 225 215 [119]
SAFER K-64 4 KPA/Weak keys 241 231 [119]
SAFER K-64 5 KPA/Weak keys 271 261 [119]

SAFER K-64/128 5 CPA 261 239 [90, 91]
SAFER K-64 5 CPA 249 244 [90, 91]

SAFER K/SK-64 5 CPA 246 238 [164]
SAFER K/SK-64 6 CPA 261 253 [164]

Table 9.1: Previous cryptanalytic results on SAFER. The time complexity unit is a
SAFER encryption.

In our analysis we assume that the key is a full vector of subkeys. When
studying the average complexity of our attack, we further assume that they are randomly
picked with uniform distribution.

Previous Cryptanalysis Results

We summarize known attacks against SAFER in Table 9.1

Differential Cryptanalysis and Friends. The resistance of SAFER to differential
cryptanalysis [21] was extensively studied by Massey in [108], where it is argued that 5
rounds are sufficient to resist to this attack. It is shown by Knudsen and Berson [90,91]
that 5 rounds can actually be broken using truncated differentials [88], a result which
is extended to 6 rounds by Wu et al. in [164].

Linear Cryptanalysis and Friends. In [65], Harpes et al. apply a generalization of
linear cryptanalysis [110, 111] to SAFER K-64 but do not manage to find an effective
homomorphic threefold sum (which generalize the notion of linear characteristics) for
1.5 rounds or more. Nakahara et al. showed in [119] that for certain weak key classes,
one can find a 3.75-round non-homomorphic linear relation with bias ε = 2−29 (which
leads to a plaintext complexity of 8/ε2 = 261 known plaintexts on five rounds and a
time complexity of 271 since the probability that a random key belongs to the correct
weak key class is 2−10). One of the conclusions of the authors of the latter article is
that linear cryptanalysis does not seem to be a serious threat to SAFER K-64.

Concerns about the Diffusion Layer. The diffusion properties of the linear layer of
SAFER have also been widely studied and, compared to the confusion layer, seem to be
its major weakness. In [116], Murphy proposes an algebraic analysis of the 2-PHT layer,
showing in particular that by considering the message space as a Z-module, one can find
a particular submodule which is an invariant of the 2-PHT transformation. In [150],
Vaudenay shows that by replacing the original substitution boxes in a 4 round version of
SAFER by random permutations, one obtains in 6.1% of the cases a construction that
can be broken by linear cryptanalysis. This also lead Brincat and Meijer to explore
potential alternatives of the 2-PHT layer [31].
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Figure 9.2: Replacing key exclusive-or and fixed substitution boxes by equivalent keyed
substitution boxes

Concerns about the Original Key Schedule. The other major weakness of SAFER
K is indubitably its key schedule. The analysis proposed in [90, 116] lead Massey to
choose the one proposed by Knudsen in [90] for SAFER SK.

9.2 Linear Cryptanalysis of SAFER: from Z8
2 to Z28

A possible reason why linear cryptanalysis does not seem to be a threat for
SAFER is that Matsui’s linear characteristics (that fits so well the operations made in
DES) are in fact not linear when it comes to the diffusion layer of SAFER except when
they only focus on the least significant bit of the bytes. Yet, those bits are not biased
through the substitution boxes [150]. Indeed, whereas a classical linear cryptanalysis
combines text and key bits by performing exclusive-or’s (i.e., additions in Z2), SAFER
mostly relies on additions in Z28 . In other words, the group structure that is classically
assumed in linear cryptanalysis does not fit when it comes to study SAFER.

Our attack is focused on the additive group (Zr
m, +). The mr characters

of this group are called additive character modulo m [121] and are the χa’s for a =
(a1, . . . , ar) ∈ {0, 1, . . . , m− 1}r defined by

χa : Zr
m −→ C×

x = (x1, . . . , xr) 7−→ χa(x) = e
2πi
m

Pr
`=1 a`x` .

(9.2)

The attack on SAFER that we describe in Section 9.3 only involves additive characters
modulo 256. To simplify the notations (and to somehow stick to the vocabulary we
are used to in classical linear cryptanalysis), we denote the linear probability of the
permutation C over Zr

256 with respect to χa and χb (where a,b ∈ {0, 1, . . . , 255}r) by

LPa,b(C) = |EP (χa(P )χb(C(P )))|2 , (9.3)

where P is a uniformly distributed random variable, and call it the linear probability
of C with input mask a and output mask b. Note that a mask byte equal to 128 means
that we focus on the least significant bit of the text byte x as 128 × x mod 256 only
depends on it.
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Figure 9.3: Another view of SAFER

Hiding the Z8
2 Group

Because the encryption procedure uses additions modulo 256 together with
bit-wise exclusive-or, we have to deal with two types of characters. Nevertheless, one
can notice that the mixture of group operations only occurs within the confusion layer.
To simplify the analysis we can think of the succession of a round key exclusive-or and
a fixed substitution box as a keyed substitution box (see Figure 9.2). Using this point
of view, we represent on round of SAFER on Figure 9.3.

Studying SAFER’s Building Blocks

We consider several building blocks that SAFER is made of, and study their
behavior with respect to the linear probability (as given by (9.3)). In what follows,
a, b ∈ {0, 1, . . . , 255} and P ∈ Z256 is a uniformly distributed random variable. Using
the notations used in this section, we can reformulate some of the results of the toolbox
introduced in Section 8.4.2 and represented on Figure 8.3.
Building Block (b): We consider the 2-PHT transformation and denote by a ∈ Z2

256

and b ∈ Z2
256 the input and output masks on this transformation. According to the

result obtained in Section 8.4.2, we know that we have

LP2-PHT(a,b) = 1 ⇔ a = 2-PHT(b).

This comes from the fact that the 2-PHT transformation is a symmetric linear operator
(in the sense that 2-PHTT = 2-PHT).
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Building Block (c): We consider a key addition in Z256. For all k ∈ Z256 we have
χa(P + k) = χa(P )χa(k) (as χa is a group homomorphism), so that

LPa,a(·+ k) = |EP (χa(P )χa(P + k))|2 = |EP (χa(P )χa(P )χa(k))|2 = 1.

Note that if key K is random, the previous equation implies that

EK

(
LP(a,a)(·+ K)

)
= 1.

Building Block (d’): We consider the parallel computation through two fixed sub-
stitution boxes S1 and S2 over Z256 and denote by a = (a1, a2) ∈ Z2

256 and b =
(b1, b2) ∈ Z2

256 the input and output masks on these boxes. We assume that the plain-
text P = (P1, P2) ∈ Z2

256 is such that P1 and P2 are independent. Letting Θ = e
2πi
256 we

have

LPa,b(S1‖S2) =
∣∣∣EP (Θ−(a1P1+a2P2)Θ(b1S1(P1)+b2S2(P2)))

∣∣∣
2

=
∣∣∣EP1(Θ

−a1P1Θb1S1(P1))EP2(Θ
−a2P2Θb2S2(P2))

∣∣∣
2

= LPa1,b1(S1) · LPa2,b2(S2).

When the boxes are random and independent, this leads to

ES1,S2 (LPa,b(S1‖S2)) = ES1(LPa1,b1(S1)) · ES2(LPa2,b2(S2)).

Assuming that the key bits are mutually independent, the previous building
blocks make it possible to compute the linear probability of one full round of SAFER.
Indeed if an input/output pair of masks a,b are given, and letting b′ = MT ×b (where
M is the matrix given in (9.1)), then the linear probability on one full round, simply
denoted R, is given by

ELPa,b(R) =
8∏

i=1

ELPai,b′i(Si)

where Si corresponds to a keyed E box for i = 1, 4, 5, 8 and to a keyed L box for
i = 2, 3, 6, 7.

Considering Several Rounds of SAFER: the Reduced Hull Effect

When several rounds are considered, Nyberg’s linear hull effect [125] applies
just as for classical linear cryptanalysis of Markov ciphers (see Theorem 8.2). Consid-
ering a succession of r > 1 rounds with independent round keys, and denoting a0 and
ar the input and the output masks respectively, this means that

ELPa0,ar(Rr ◦ · · · ◦ R1) =
∑

a1,...,ar−1

r∏

i=1

ELPai−1,ai(Ri).
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We stress that this equation is a real equality (namely, not a heuristic approximation)
under the hypothesis that the round keys are independent.

When cryptanalysing a block cipher, it is often considered that one specific
characteristic (i.e., a succession of r + 1 masks a0,a1, . . . ,ar) is overwhelming (i.e.,
approximates the hull) so that

ELPa0,ar(Rr ◦ · · · ◦ R1) ≈
r∏

i=1

ELPai−1,ai(Ri).

This approach was taken by Matsui when cryptanalysing DES. In that particular case,
the correctness of this approximation could be experimentally verified [111]. We will
not consider the full linear hull effect nor restrict ourselves to one specific characteristic.
Instead, we consider the characteristics among the hull following a specific pattern.

Definition 9.1 Let a ∈ Z8
256 be an arbitrary mask. The pattern corresponding to the

mask a is the binary vector of length eight, with zeroes at the zero position of a and ∗ at
the non-zero positions of a. The weight w(p) of a pattern p is the number of ∗ in this
pattern. We denote the fact that a mask a corresponds to pattern p by a ∈ p. We denote
by and the byte-wise masking operation, i.e., given an element m ∈ Z8

256 and a pattern p,
m′ = m and p is such that m′

i = 0 if pi = 0 and m′
i = mi otherwise, for i = 1, . . . , 8. We

denote by intp(m) the integer representation of the concatenation of the bytes of m and p
corresponding to the non-zero positions of p, and by I(p) = {intp(m) : m ∈ Z8

256}.
Finally, for an arbitrary integer i ∈ I(p), we denote int−1

p (i) the element m ∈ p such
that intp(m) = i.

For example, the pattern corresponding to the mask

a = [0,128,0,0,0,255,7,1]

is p = [0*000***] (which is of weight 4). If

m = [3,128,128,255,0,255,7,1],

then m and p = a, and

intp(m) = 10000000 11111111 00000111 000000012 = 2164197121.

Note that for an arbitrary element m ∈ Z8
256 and any pattern p,

int−1
p (intp(m)) = m and p.

The fact that we only consider, among the hull, the characteristics following a
given sequence of patterns p0, p1, . . . , pr can be written as

ELPa0,ar(Rr ◦ · · · ◦ R1) ≈
∑

a1∈p1
...

ar−1∈pr−1

r∏

i=1

ELPai−1,ai(Ri). (9.4)

where a0 ∈ p0 and ar ∈ pr. We call this approximation the reduced hull effect. Note
that in any case, (9.4) actually underestimates the true linear hull.
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Building Reduced Hulls on Two Rounds

In order to build such reduced hulls on SAFER, we start by enumerating the
possible sequences of patterns on the linear diffusion layer (see tables E.1 through E.5
in Appendix E). In the tables, we denote the existence of an input mask a1 of pattern
p1 corresponding to an output mask a2 of pattern p2 (i.e., a1 = MT × a2, so that
LPa1,a2(M) = 1) by p1 → p2. Moreover, we denote the fact that n distinct pairs of
input/output masks following the pattern p1/p2 can be found by p1

n−→ p2. For example,
the output mask corresponding to the input mask a = [0,0,0,0,0,0,0,128] on the
linear layer is b = [128,0,0,0,0,0,0,0], and there is no other possible mask with the
same input/output patterns. This fact is denoted by

[0000000*]
1−→ [*0000000].

If we consider the input pattern [0000000*] and the output pattern [***0*000] for
example, two distinct pairs of masks on the linear layer following these patterns can
be found (namely, [0,0,0,0,0,0,0,64] corresponds to [192,128,128,0,128,0,0,0]
and [0,0,0,0,0,0,0,192] to [64,128,128,0,128,0,0,0]). This is denoted by

[0000000*]
2−→ [***0*000].

In the tables, these patterns are ordered by input/output weights, where w1 → w2

(1 ≤ w1, w2 ≤ 8) denotes the list of all possible input/output patterns p1, p2 on the
linear layer such that p1 is of weight w1 and p2 is of weight w2. To reduce the size of
the list, we restrict it to patterns of weight sum less than 7.

Next, we need to build characteristics on several rounds based on the lists of
possible succession of patterns on the linear layer. We proceed step-by-step, starting
with characteristics on two rounds. Two characteristics on full rounds can only be
concatenated if, and only if, the output mask of the first one is equal to the input mask
of the second one. This translates for patterns as follows: two successions of patterns
on the linear layer can only be concatenated if the output pattern of the first succession
is equal to the input pattern of the second succession.

Example 9.1 We can concatenate

[000*000*]
1−→ [0*000000] and [0*000000]

1−→ [**00**00].

We denote this by [000*000*]
1−→ [0*000000]

1−→ [**00**00]. This means that succes-
sion of patterns of weights 2→ 1→ 4 on two rounds exist. In this particular example,
there is only one characteristic corresponding to this succession of masks, which is
represented on Figure 9.4(a).

Example 9.2 Similarly, one can obtain the succession

[****0000]
252−−→ [**000000]

254−−→ [**00**00]
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2 129 00 0 0 0 0

4 130 130 65 0 0 0 0

129 127 0 0 127 129 0 0

(a) (b)

Figure 9.4: Examples of characteristics on two successive linear layers

which is a succession of pattern of weights 4 → 2 → 4 on two rounds. In this case,
252 × 254 = 64008 distinct characteristics correspond to this succession (one of which
is represented on Figure 9.4(b)).

Finally, it should be noted that the characteristic of Example 9.1 actually leads
to an ELP equal to 0. This is due to the fact that both input and output masks on
the substitution box are equal to 128, which is equivalent to compute the traditional
linear probability by only considering the least significant bit. In the second example,
computing the reduced hull leads to a non-zero linear probability. On Table E.6 in
Appendix E we list all possible sequences of three weights less than 6. A X indicates
that a non-zero reduced hull with the corresponding weight patterns exists, a 0 indicates
that a reduced hull exists but always lead to a ELP equal to 0 (like in Example 9.1),
a ∅ means that no characteristic corresponds to the succession of weights. If nothing is
specified, it means that we do not need the corresponding patterns for our attacks.

9.3 Attacks on Reduced-Round Versions of SAFER

From Distinguishing Attacks to Key Recovery

In this section, a reduced hull on r diffusion layers of SAFER corresponds to
a succession patterns on r successive linear layers separated by confusion layers. The
weight of a reduced hull is the number of active substitution boxes (i.e., the number
of boxes with non-zero input/output masks) for any characteristic of the hull. For
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Input: A reduced hull on r rounds with input mask a0 ∈ p0 and output mask ar ∈ pr.

Output: A set of counters lhκ1,κ2,κ2r+1 with κ1, κ2 = 0, . . . , 28w(p0)−1 and κ2r+1 = 0, . . . , 28w(pr)−1.

Memory: A set of counters Ni,j initialized to 0, with i = 0, . . . , 28·w(p0)−1 and j = 0, . . . , 28·w(pr)−1.

0: foreach of the d plaintext/ciphertext pair (m, c) do

1: i← intp0(m) and j ← intpr (c)

2: Ni,j ← Ni,j + 1

3: done

4: foreach (κ1, κ2, κ2r+1) ∈ I(p0)× I(p0)× I(pr) do

5: k1 ← int−1
p0 (κ1), k2 ← int−1

p0 (κ2), and k2r+1 ← int−1
pr

(κ2r+1)

6: /* compute the likelihood lh corresponding to the round keys guess */

7: counterh ← 0 for all h in the subgroup of C× induced by χa0 and χar

8: foreach (i, j) ∈ {0, 1, . . . , 28w(p0) − 1} × {0, 1, . . . , 28w(pr) − 1} such that Ni,j > 0 do

9: m← int−1
p0 (i) and c← int−1

pr
(j)

10: Add/xor k1 to m, apply the substitution box layer, add/xor k2, call the result m′.

11: Subtract k2r+1 to c, call the result c′

12: h← χa0(m
′)χar (c′) and counterh ← counterh + Ni,j

13: done

14: lhκ1,κ2,κ2r+1 ← maxh(counterh)

15: done

Table 9.2: Key Recovery Attack against a r reduced-round version of SAFER.

example, the succession

[****0000]
252−−→ [**000000]

254−−→ [**00**00]

(of Example 9.2) is a reduced hull of weight 2 on two diffusion layers. A reduced hull
easily leads to a distinguishing attack on a reduced-round version of SAFER that would
start and end by a diffusion layer.

Table 9.2 describes a key recovery attack on a SAFER reduced to r rounds by
means of a reduced hull on r diffusion layers. Each of the counters obtained with this
algorithm measures the likelihood of the corresponding round key bits (for round keys
1, 2, and 2r + 1) of being the correct ones. The way these counters are computed relies
on the decision rule of Heuristic 8.2. Based on this heuristic, we expect the correct
guess to be near the top of a list sorted according to these counters when the number
of plaintexts/ciphertext pairs is close to

q =
8 ln 2

(d− 1)ELPC(a0,ar)
,

where d is the least common multiple of the respective orders of the input and of the
output characters on the r rounds.
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In the worst case, line 4 loops 28·(2w(p0)+w(pr)) times. In practice, the complex-
ity is much lower (by considering key dependence due to the key schedule) and depends
on the number of bits nk that we need to guess in our attacks. When considering
SAFER K-64 for example, a guess for the meaningful bytes of k1 uniquely determines
the bytes of k2 (for the reasons given in Section 9.1.2). Similarly, the meaningful bytes
of k2r+1 that are at the same positions than those of k1 are also uniquely determined.
When considering SAFER SK-64, similar techniques may apply, depending on the spe-
cific shapes of the input/output masks and the number of rounds. In all cases, if the
meaningful bytes of k2 and k2r+1 are actually added modulo 256, then they don’t need
to be guessed (as for Building Block (a), they don’t alter the linear probability). If
we only consider SAFER SK, this observation also applies to k2. Finally, line 8 loops
2np times where np = min(8 · (w(p0) + w(pr)), log2 q) (as

∑
i,j Ni,j = q). Consequently,

given any input/output masks a0 ∈ p0 and ar ∈ pr, the time complexity of the attack
is given by

T =
8 ln 2

(d− 1)ELPC(a0,ar)
+ 2nk+np . (9.5)

An attack on 2 Rounds

The best attacks we could find on two rounds are based on reduced hull of
weight 2 and are listed in Table 9.3. The best attack on SAFER K exploits the reduced
hull represented on Figure 9.5. To perform the attack, one needs to guess 8 bits of K1,
no bits of K2 (as those that could be meaningful are added modulo 256 and thus do not
influence the linear probability), and 8 bits of K5 (as those in position 4 are uniquely
determined by the guess made on K1). We thus obtain nk = 16. The algorithm then
loops through the

q =
8 ln 2

maxa0,a2

(
(d− 1)ELPH(2)

(a0,a2)
)

pairs, where H(2) here denotes the reduced hull and where a0 (resp. a2) denote the
input (resp. output) mask on H(2). The final complexity is computed according to (9.5)
and is approximately equal to 223.62. Table 9.3 gives other complexities for various
characteristics.

For SAFER SK, the previous reduced hull leads to a higher complexity than

Reduced hull min
a0,a2

8 ln 2

(d− 1)ELPH(2)
(a0, a2)

2np 2nk Complexity

[000*0000]
1−→ [**000000]

254−−−→ [**00**00] 27.35 27.35 224/224 231.35/231.35

[000*0000]
1−→ [**000000]

255−−−→ [00**00**] 27.62 27.62 216/224 223.62/231.62

[00000*00]
1−→ [*000*000]

254−−−→ [*0*0*0*0] 26.61 26.61 224/232 230.61/238.61

[00000*00]
1−→ [*000*000]

255−−−→ [0*0*0*0*] 26.87 26.87 224/232 230.87/238.87

[000000*0]
1−→ [*0*00000]

254−−−→ [****0000] 27.35 27.35 224/224 231.35/231.35

[000000*0]
1−→ [*0*00000]

255−−−→ [0000****] 27.62 27.62 224/232 231.62/239.62

Table 9.3: Reduced hull on two diffusion layers and attack complexities against two
rounds of SAFER K/SK.
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Figure 9.5: The reduced hull on 2 diffusion layers used to attack 2 rounds of SAFER K

– 131 –



Chapter 9 A Generalized Linear Cryptanalysis of SAFER K/SK

for SAFER K as 8 more bits of K5 must be guessed. It appears that the best attack on
two rounds of SAFER SK makes use of the first characteristics given in Table 9.3 and
has a complexity approximately equal to 231.35.

Attacks on 3, 4, and 5 Rounds

To attack three rounds of SAFER K/SK, we make use of reduced hulls on two
diffusion layers of weight 6. We list all such possibles reduced hulls in Table E.7 in
Appendix E, restricting to input/output patterns of weight 1 to limit the number of
key bits guess. Using similar techniques than for the two rounds case, we manage to
mount an attack against both versions of SAFER reduced to three rounds within a
complexity close to 238.75.

To attack four rounds, we use the reduced hulls on four diffusion layers listed
on Table E.8 in Appendix E. The first reduced hull in the table shows that both
versions of SAFER can be attacked within a complexity close to 249. Some of our
attacks actually exactly correspond to the original version of linear cryptanalysis. It is
the case here as the non-zero byte of both input/output masks maximizing the expected
linear probability is equal to 128. This means that both input/output masks only focus
on one single bit. It is not clear to us whether this correlation can easily be found by
other means than ours.

Finally, the first reduced hull of Table E.9 in Appendix E shows that 5 rounds
of SAFER K can be broken within a complexity of 256. Finally, we note that among the
output masks that maximize the expected linear probability, several end by an even
byte. For example the best reduced hull is obtained when the last output masks ends
by a 2. The same remarks applies to the fourth byte of the output mask. Consequently,
strictly less than 16 key bits need to be guessed in the last round key, so that the same
reduced hull can also be used break 5 rounds of SAFER SK.

9.4 Implementation of the Attack on 2 Rounds

We implemented the best attack on two rounds of SAFER K. As show on
Table 9.3, the best choice of the reduced hull is in this case:

[000*0000]
1−→ [**000000]

255−−→ [00**00**].

More precisely, the input/output masks we choose are

a0 = [0 0 0 128 0 0 0 0] and a2 = [0 0 183 73 0 0 73 183].

We tweaked the attacked of Table 9.2 to our particular two round attack. For example,
since the total number of samples that we expect to require is less than 28·w(p0) ×
28·w(p2) = 240, we did not implemented the Ni,j counters but simply used tables to
store the plaintext/ciphertext pairs. The pseudo-code of our key ranking experiments
is given in Table 9.4. The parameter KEYS corresponds to the number of keys used
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1: for k = 1, 2, . . . , KEYS

2: k ← {0, 1}64 and (k1, k2, . . . , k5)← SAFER K KEY SCHEDULE(k)

3: for t = 1, 2, . . . , PAIRS

4: m[t]← {0, 1}64 and c[t]← SAFER K TWO ROUNDS ENCRYPTk1,k2...,k5(m[t])

5: done

6: lhcorrect key ← compute lh(c, m, k1, . . . , k5) and rank[k]← 1

7: foreach (k′1, k
′
2, . . . , k

′
5) 6= (k1, k2, . . . , k5) do

8: lhincorrect key ← compute lh(c, m, k′1, . . . , k
′
5)

9: if lhincorrect key > lhcorrect key then rank[k]← rank + 1 end if

10: if lhincorrect key = lhcorrect key then rank[k]← rank + 0.5 end if

11: done

12: done

13: output 1
KEYS

P
k rank[k]

14: procedure compute lh(c, m, k1, . . . , k5)

15: counter[0, 1, 2, . . . , 255]← 0

16: for t = 1, 2, . . . , PAIRS

17: m′
3 ← E[m3[t]⊕ k1,3] + k2,3

18: c′2 ← c2[t]− k5,2, c′3 ← c3[t]⊕ k5,3, c′6 ← c6[t]− k5,6, c′7 ← c7[t]⊕ k5,7

19: `← −128 ·m′
3 + 183 · c′2 + 73 · c′3 + 73 · c′6 + 183 · c′7 and counter[`]← counter[`] + 1

20: done

21: return maxe counter[e]

Table 9.4: Key ranking experiments based on the best two rounds attack on SAFER K.

to compute the mean position of the correct round key guess among all the possible
key candidates. The parameter PAIRS is the number of samples used to rank each key.
In this algorithm, the SAFER K KEY SCHEDULE at line 2 actually corresponds to a
reduced version of the original key schedule of SAFER K where we only output the first
five round keys. The SAFER K TWO ROUNDS ENCRYPT (line 4) encrypts a 64-bit
message by applying two full rounds followed by the mixed addition with the fifth key.
In line 6 we compute the likelihood of the correct round key. This likelihood is based
on the decision rule of Heuristic 8.2. Here we count the number of occurrences of each
` ∈ {0, 1, 2, . . . , 255} instead of counting the number of occurrences of each e

2iπ
256

`, which
is completely equivalent. Between lines 7 and 12, we run through all the possible wrong
round keys and increment the position of the correct round key guess each time the
likelihood of a wrong round key is higher (or equal) to that of the correct round key.
On line 13, the algorithm outputs the average value of the ranks.

The results of our experiments are shown on figures 9.6 and 9.7. Figure 9.6 il-
lustrates how the correct round key rank depends on the number of plaintext/ciphertext

– 133 –



Chapter 9 A Generalized Linear Cryptanalysis of SAFER K/SK

1

20

40

60

80

100

120

22 24 26 28 210 212 214 216 218 220

r r r r r r r r r r r r
r

r

r

r

r
r r r r

Figure 9.6: Rank of the correct key when the third, seventh, and eighth bytes of k5 are
correct for all the wrong keys
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Figure 9.7: Rank of the correct key when the third, seventh, and eighth bytes of k5 are
incorrect for all the wrong keys
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r Reduced hull Attack Complexity

2 [000*0000]
1−→ [**000000]

254−−−→ [**00**00] 231.5/231.35

2 [000*0000]
1−→ [**000000]

254−−−→ [00**00**] 223.62/231.62

3 [0*000000]
1−→ [**00**00]

255−−−→ [000*000*]
1−→ [0*000000] 238.75/238.75

4 [000*0000]
1−→ [**000000]

254−−−→ [**00**00]
255−−−→ [000*000*]

1−→ [0*000000] 249.22/249.22

4 [0*0*0000]
1−→ [0000**00]

254−−−→ [**00**00]
255−−−→ [000*000*]

1−→ [0*000000] 249.18/256

5 [000*0000]
1−→ [**000000]

254−−−→ [**00**00]
254−−−→ [0*000*00]

1−→ [0*000*00]
254−−−→ [0*0*0*0*] 256/256

Table 9.5: Selected reduced hulls on r diffusion layers and attack complexities against
r rounds of SAFER K/SK.

pairs. Here we do not rank the correct guess among all possible guesses, but only con-
sider (on line 7 of the algorithm given in Table 9.4) the wrong round keys such that

k′5,2 = k5,2, k′5,6 = k5,6, and k′5,7 = k5,7.

Note that a guess for k′1,3 uniquely determines k′2,3 and k′5,3. Consequently, the correct
round key is ranked among 256 possible keys. From Figure 9.6 we can see that the
correct round key can be distinguished from wrong keys with non-negligible probability
when the number of samples q is roughly greater than 210. For q > 216 the correct guess
is systematically ranked in the top ten keys. Figure 9.7 shows similar results except
that the wrong keys are such that

k′5,2 6= k5,2, k′5,6 6= k5,6, and k′5,7 6= k5,7.

In this case also, the correct key can be distinguished from the wrong ones with non-
negligible probability when q > 210 and is almost always guessed correctly when more
than 216 samples are available.

These results show that Heuristic 8.2 might underestimate a little bit the
number of samples needed to rank the right key among the most likely candidates.
Future work could consider small versions of SAFER (like for example the one suggested
in [119]) in order to perform attacks on more rounds.

9.5 Conclusion

We have presented a generalized linear cryptanalysis of SAFER K/SK, the
complexity of which are summarized in Table 9.5. Our attacks do not break the full
versions of these ciphers but manage to attack up to 5 rounds. This improves on
previous results from Nakahara et al. We showed that in certain cases (for example,
in the attack against four rounds), our attack actually correspond to a classical linear
cryptanalysis. This seems to contradicts the belief that SAFER is particularly strong
against linear cryptanalysis.

It is not clear to us whether our techniques can be used to attack the 128-bit
block versions of the SAFER family. Because of the block length, the search of useful
reduced hull is much more complex than for SAFER K/SK. Moreover, in the case of
SAFER + +, the good diffusion properties may lead to high complexities within a small
number of rounds.
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Chapter 10

Provable Security and the Decorrelation Theory

Most modern block ciphers are designed to resist a wide range of cryptanalytic
techniques. Among them, one may cite linear cryptanalysis [110, 111, 147], differential
cryptanalysis [21, 22], as well as several variants such as impossible differentials [18],
the boomerang attack [162] or the rectangle attack [19]. Proving resistance to all these
attacks is often tedious and does not give any guarantee that a subtle new variant would
not break the construction. Rather than considering all known attacks individually, it
would obviously be preferable to give a unique proof, valid for a family of attacks.

In [155], Vaudenay shows that the Decorrelation Theory provides tools to prove
security results in the Luby-Rackoff model [102], i.e., against adversaries only limited
by the number of plaintext/ciphertext pairs they can access. When these pairs are
randomly chosen and mutually independent, these adversaries exactly correspond to
the q-limited distinguisher studied in the previous sections and are referred to as q-
limited non-adaptive adversaries. When the adversary is allowed to choose each query
depending on the results of the previous ones, it is referred to as a q-limited adaptive
adversary. In Section 10.1 we detail the Luby-Rackoff model and in Section 10.2 we
recall the notion of q-wise distribution matrix of a block cipher and how it relates to
the advantage of the best (non-)adaptive q-limited adversary.

In practice, one is more interested by the security against “practical” attacks
(such as linear and differential cryptanalysis) rather than provable security against
abstract adversaries. Vaudenay shows in [154] that it is actually possible to relate the
security against q-limited adversaries to both linear and differential cryptanalysis, but
also to a wider class of attacks known as iterated attacks. This class of attacks was
initially inspired by linear and differential cryptanalysis and actually formalizes most of
the possible statistical attacks against block ciphers. In particular, linear cryptanalysis
is an iterated attack of order 1, differential cryptanalysis is of order 2, and higher order
differential cryptanalysis [88, 95] of order i is an iterated attack of order 2i. We recall
some of these results in Section 10.3.

As an example, we recall in Section 10.4 how the famous result from Luby and
Rackoff about the security of the Feistel scheme [50,102] translates in the Decorrelation
Theory. This security result will play an important role in the security proof of KFC [5],
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one of the two provable secure constructions that we will introduce in chapters 11 and
12.

Computing the exact adversaries’ advantage against a practical block cipher
can prove to be a hard task in general, even by means of the Decorrelation Theory. As
a possible solution, Vaudenay suggests to use so-called decorrelation modules. These
can be though as building blocks, with perfect decorrelation up to a given (small) order,
that can be assembled to construct a block cipher which security easily follows from
that of the modules. In [152, 155], Vaudenay proposes practical constructions based
on these modules. In particular, COCONUT98 is one of the first efficient block cipher
provably secure against 2-limited adversaries. Yet, since decorrelation results do not
prove anything more than what they claim, security against 2-limited adversaries does
not give any kind of guaranty against q-limited adversaries for q > 2. This is illustrated
by Wagner’s boomerang attack [162] that breaks COCONUT98 within a complexity
close to 238, which is less than the 264 level of security that one would expect. Although
it was made clear by Wagner that this attack “is not to suggest that the decorrelation
approach is fundamentally flawed [...], but rather that the theoretical results must be
interpreted with caution” [162, p.159], it lead to a certain confusion in the academic
world. For example, according to Knudsen and Rijmen, “although the decorrelation
theory may be a valuable contribution to cryptographic research, it does not guarantee
resistance against state-of-the-art differential attacks” [92, p.94].

Since a model is essentially a simplified abstraction of reality, the argument
about the significance of the results obtained within the one introduced by Luby and
Rackoff is perfectly admissible. Yet we stress the fact that this debate would have
nothing to do with the Decorrelation Theory which, in its basic form, is essentially a
mean to compute or bound the advantage of a q-limited distinguisher in this model.
One could possibly discuss the practicality of the tools introduced by this theory, but
that would probably essentially be a matter of taste. Of course, we do not contest
the validity of the attacks against ciphers which security is based on decorrelation
results. Our argument is that it would be preferable to take advantage of the best
of both worlds, namely, of the provable security aspects of the block ciphers based on
decorrelation techniques and of the practical security aspects of ad-hoc constructions.

To do so, we suggest to avoid algebraic decorrelation modules, which surely
provide perfect level of decorrelation up to a given order, but which security collapse
after that. Instead, we propose to use typical building blocks which widespread ciphers
are usually made of, and try to see what kind of results can be proved afterwards.
Although this approach seems to correspond to the classical one, we will see that by
bringing more randomness within these building blocks, one can point out symmetries
within the distribution matrices that make it possible to actually prove several security
results about the whole construction. We introduce these building blocks in Section 10.5.
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A

p1, p2, . . . , pq

F(p1),F(p2), . . . ,F(pq)

F

F = F0 or F = F1

0 or 1

Figure 10.1: A q-limited non-adaptive distinguisher between H0 : F = F0 and H1 : F = F1

10.1 The Luby-Rackoff Model

In their seminal work, Luby and Rackoff showed how to construct a secure
block cipher from a secure pseudo-random bit generator [102]. Their definition of se-
curity for a block cipher is the one we consider. Essentially, they assume that a block
cipher is secure when no algorithm can distinguish between a black box implementing
a random instance of the block cipher and a black box containing a random instance of
the perfect cipher1 by submitting (a limited number of) input strings and by looking
at the outputs. In what follows, we give a more formal definition of this security notion
and generalize it to random functions. We consider a game in which an adversary is
given a black box access to either of these two functions, its objective being to guess
whether it has access to F0 or to F1. This can be modelized as an hypothesis testing
problem, where the two hypotheses are H0 : F = F0 and H1 : F = F1, in which the
adversary is allowed to learn the value of the random function F in q points. The al-
gorithm is assumed to be computationally unbounded (and therefore, we can assume it
is deterministic) and only limited by the number of queries to the black box. When
the q queries are made at once, the adversary is non-adaptive (see Figure 10.1). When
the distinguisher is allowed to adaptively choose a query depending on the outcomes
of the previous ones, it is adaptive (see Figure 10.2). Denoting pi the ith query of the
adversary and letting Zi = (pi, F(pi)) for i = 1, 2, . . . , q, the advantage of an adversary
A between H0 and H1 is

AdvA(H0, H1) = |PrH0 [A(Zq) = 1]− PrH1 [A(Zq) = 1]| ,

as in Definition 6.2, the probabilities holding over the random function F. In what
follows we either write AdvA(H0, H1) or AdvA(F0, F1).

To evaluate the randomness of a pseudo-random function F, we assume in the
previous game that F0 is actually a uniformly distributed random function drawn among
the |Y||X | possible functions on the given sets and that F1 is equal to F. In that setting,
if the advantage of any adaptive distinguisher between both hypotheses is negligible,
the function F is said to be pseudorandom.

1That is, a permutation drawn uniformly at random among all possible permutations on the given
set.
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AF

F = F0 or F = F1
p1

pq

F(pq)

F(p1)

0 or 1

Figure 10.2: A q-limited adaptive distinguisher between H0 : F = F0 and H1 : F = F1

The security notions introduced for random functions are easy to adapt to
random permutations (or block ciphers). Let T be a finite set and let C0,C1 : T → T
be two random permutations on that set. We consider a game in which an adversary
is given a black box access to either of these two permutations, its objective being to
guess whether it has access to C0 or to C1. The corresponding two hypotheses are
H0 : C = C0 and H1 : C = C1, the adversary being allowed to learn the values of the
random permutation C in q points. In this case also, the adversary is assumed to be
computationally unbounded. The notions of adaptive and non-adaptive distinguishers
naturally apply to this setting and the definition of the advantage is unchanged.

We can apply the previous security notion to evaluate the security of a block
cipher. Let

C = {Ck : T → T : k ∈ K}
be a block cipher on the text space T and the finite key space K. Let C? be the
perfect cipher on T , that is, a permutation drawn uniformly at random among all |T |!
permutations on T . We say that C is secure against non-adaptive attacks when all
non-adaptive distinguishers between C and C? have a negligible advantage. The block
cipher is secure against adaptive attacks when this is also the case of the advantage of
any adaptive adversary.

10.2 Computing the Advantage by means of Distribution Ma-

trices

The distribution matrix of a random function or a random permutation is a
fundamental notion of the Decorrelation Theory.

Definition 10.1 Let q be a positive integer. Let X and Y be two finite sets and let
F : X → Y be a random function. The q-wise distribution matrix of F is the |X |q × |Y|q
matrix [F]q defined by

[F]q(x1,...,xq),(y1,...,yq) = PrF[F(x1) = y1, . . . ,F(xq) = yq] = PrF[(x1, . . . , xq)
F−→ (y1, . . . , yq)]
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where x1, . . . , xq ∈ X and y1, . . . , yq ∈ Y.

As an example, the 2-wise distribution matrix of the uniformly distributed
random function F? : {0, 1} → {0, 1} is the 22 × 22 matrix

[F?]2 =




1/2 0 0 1/2
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/2 0 0 1/2


 .

The 2-wise distribution matrix of the perfect cipher C? : {0, 1} → {0, 1} is the 22 × 22

matrix

[C?]2 =




1/2 0 0 1/2
0 1/2 1/2 0
0 1/2 1/2 0

1/2 0 0 1/2


 .

Intuitively, the role of the distribution matrix of an arbitrary function F (resp.
permutation C) is to evaluate to what extend the function (resp. permutation) behaves
like its ideal counterpart F? (resp. C?). In other words, if [F]q looks just like [F?]q,
then q queries won’t be enough to distinguish F from a uniformly distributed random
function (this is more formally stated later). Clearly, the information contained in the
q-wise distribution matrix of a function F is also included in its (q+1)-wise distribution
matrix, since

[F]q(x1,...,xq),(y1,...,yq) =
∑

xq+1∈X
[F]q+1

(x1,...,xq+1),(y1,...,yq+1)
=

∑

yq+1∈Y
[F]q+1

(x1,...,xq+1),(y1,...,yq+1)
.

Therefore, it is clear that there might be huge gap between the best (q + 1)-limited
distinguisher between F and F? and the best q-limited distinguisher.

Example 10.1 Let F : {0, 1} → {0, 1} be a random function which is either f0 : {0, 1} →
{0, 1} or f1 : {0, 1} → {0, 1} with equal probability, where fb(x) = b for all x. The
2-wise distribution matrix of a random function F is

[F]2 =




1/2 0 0 1/2
1/2 0 0 1/2
1/2 0 0 1/2
1/2 0 0 1/2


 .

It is easy to distinguish it from F? (with a high advantage) by simply asking two distinct
queries and checking whether both answers are distinct. If they are, the black box
cannot be implementing F. The advantage of the distinguisher following this strategy
is 1

2 . Clearly, the 1-wise distribution matrix of F is

[F]1 =
[
1/2 1/2
1/2 1/2

]
,
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which allows to clearly see that F cannot be distinguished from F? with one query only,
i.e., the advantage of any distinguisher limited to one query is zero.

This suggests that the distance between the respective distribution matrices of
two random functions (or permutations) might be a good measure of how distinct these
two functions (or permutations) are. This is formally stated in the following theorem
(which corresponds to theorems 10 and 11 in [155]). Note that although the theorem
is stated for random functions here, it also applies to random permutations.

Definition 10.2 Let q be a positive integer. Let X and Y be two finite sets and let A be
a |X |q × |Y|q matrix indexed by q-tuples (x, y) = ((x1, . . . , xq), (y1, . . . , yq)) ∈ X q × Yq.
We define

|||A|||∞ = max
x

∑
y

|Ax,y|

and
‖A‖a = max

x1

∑
y1

· · ·max
xq

∑
yq

|Ax,y| .

Theorem 10.1 Let q be a positive integer. Let X and Y be two finite sets and F0, F1 :
X → Y be two random functions. The advantage of the best q-limited non-adaptive
distinguisher Ana between H0 : F = F0 and H1 : F = F1 is such that

AdvAna(H0, H1) =
1
2
|||[F1]q − [F0]q|||∞.

The advantage of the best q-limited adaptive distinguisher Aa between H0 : F = F0 and
H1 : F = F1 is such that

AdvAa(H0, H1) =
1
2
‖[F1]q − [F0]q‖a.

Example 10.2 If we re-consider the random function of Example 10.1, we can see that

[F]2 − [F?]2 =




0 0 0 0
1/4 −1/4 −1/4 1/4
1/4 −1/4 −1/4 1/4
0 0 0 0


 ,

and thus
1
2
|||[F]2 − [F?]2|||∞ =

1
2
‖[F]2 − [F?]2‖a =

1
2
.

Example 10.3 As an application of Theorem 10.1, one can compute the RF/RP-
advantage [140], which is the advantage of the best distinguisher between F? : T → T
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and C? : T → T . Applying decorrelation techniques to prove this lemma was originally
suggested by Junod [74]. We let N = |T |. Obviously, we can assume that the q queries
x1, x2, . . . , xq made by the best distinguisher are distinct, since asking the same query
twice cannot increase its advantage. In that case

[F?]q(x1,...,xq),(y1,...,yq) = PrF? [∩q
i=1F

?(xi) = yi] =
q∏

i=1

PrF? [F?(xi) = yi] =
1

N q
.

and

[C?]q(x1,...,xq),(y1,...,yq) = PrC? [∩q
i=1C

?(xi) = yi] =

{
0 if yi = yj for some i 6= j,
(N−q)!

N ! otherwise.

From the two previous equations, one can see that the difference [F?]q(x1,...,xq),(y1,...,yq) −
[C?]q(x1,...,xq),(y1,...,yq) does not depend on the particular choice of the q inputs (as long as
they are distinct). This immediately allows to conclude that the best strategy is simply
to choose q distinct queries, which can be done at once, so that the best adaptive
adversary does not present any advantage compared to the best non-adaptive one.
Simply denoting A the best distinguisher, letting x1, . . . , xq ∈ T be q distinct elements,
and denoting

D = N(N − 1) · · · (N − q + 1)

the number of strings of q distinct elements of T , we have

AdvA(F?,C?) =
∑

y1,...,yq

∣∣∣[F?]q(x1,...,xq),(y1,...,yq) − [C?]q(x1,...,xq),(y1,...,yq)

∣∣∣

= D

∣∣∣∣
1

N q
− (N − q)!

N !

∣∣∣∣ + (N q −D)
1

N q

= 1− 1
N q

N !
(N − q)!

.

We derived the exact advantage of the best distinguisher between F? and C?. Letting
q = θ

√
N , the previous equation leads to (see [157, p.71] for example)

AdvA(F?, C?) = 1− N !

Nθ
√

N (N − θ
√

N)!
N→∞−−−−→ 1− e−θ2/2.

This shows that one can distinguish F? from C? with a high advantage when the number
of queries q is of the order of magnitude of

√
N .

In the scope of provable security of block cipher, one is essentially interested
in computing the advantage of the best (non-)adaptive distinguisher between the block
cipher C considered and the perfect cipher C?. Theorem 10.1 provides a neat way to do
so, provided that the q-wise distribution matrix of C can be computed. In the rest of
this section, we recall several essential properties about distribution matrices and about
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their norms, which we will extensively use in the following sections to prove security
results on real block cipher constructions. These results are either trivial or proved
in [155].

Lemma 10.1 Let q be a positive integer and let X , Y, and Z be three finite sets. Let
F0 : X → Y and F1 : Y → Z be two independent random functions. Then

[F1 ◦ F0]q = [F0]q × [F1]q.

Lemma 10.1 will be particularly helpful for computing the distribution ma-
trix of a product cipher, based on the distribution matrices of each individual rounds
(assuming that the round keys are mutually independent).

Lemma 10.2 Let q be a positive integer and let T be a finite set. Let C : T → T be a
random permutation. We have

[C ◦ C?]q = [C? ◦ C]q = [C?]q.

Note that the previous lemma is not true when considering random functions.
Indeed, consider for example the function f : {0, 1} → {0, 1} such that f(x) = 0 for all
x, then (f ◦ F?)(x) = 0 for all x whereas (F? ◦ f)(x) is a random value.

Based on Lemma 10.2 and on the fact that both ||| · |||∞ and ‖ · ‖a are matrix
norms (i.e., such that ‖A×B‖ ≤ ‖A‖× ‖B‖), it is easy to prove the following theorem
(see Theorem 4 in [155]).

Theorem 10.2 Let q be a positive integer, let T be a finite set and C1, . . . ,Cr be r
mutually independent random permutations on T . Let C = Cr ◦ · · · ◦ C1 and C? be the
perfect cipher over T . Letting ‖ · ‖ be either ||| · |||∞ or ‖ · ‖a, we have

‖[C]q − [C?]q‖ ≤
r∏

i=1

‖[Ci]q − [C?]q‖.

Theorem 10.2 is essential when studying product ciphers. For example, given a
cipher which iterates the same round r times (with mutually independent round keys),
it is usually sufficient to derive the distribution matrix of one round, compute the norm
of the difference between this matrix and that of the perfect cipher, and raise the result
to the power r to get (using Theorem 10.1) a practical upper bound on the advantage
of the best (non-)adaptive distinguisher on the whole construction.
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1: c← 0

2: for t = 1, 2, . . . , q do

3: P ← {0, 1}n and C ← c(P )

4: if a • P = b • C then c← c + 1 endif

5: done

6: if
˛̨
c− q

2

˛̨
> T then output 1 else output 0

Algorithm 10.1: A q-limited linear distinguisher with oracle access to a permu-
tation c on {0, 1}n, based on the input/output masks a, b ∈ {0, 1}n \ {0} and the
threshold T

10.3 From Linear Cryptanalysis and Differential Cryptanaly-

sis to other Iterated Attacks

Linear cryptanalysis is an attack proposed by Matsui [110, 111] based on pre-
vious ideas from Tardy-Corfdir and Gilbert [147]. It is a projection based attack (see
Chapter 8) that applies to block ciphers defined on bit strings, in which the adversary
linearly derives one bit of information from each plaintext/ciphertext pair available.
Algorithm 10.1 gives a general description of a q-limited linear distinguisher.

Based on Heuristic 8.2, we know that the data complexity of an effective (clas-
sical) linear distinguisher between the block cipher C and the perfect cipher C? should
be at least close to

8 ln 2
ELPa,b(C)

where a, b ∈ {0, 1}n \ {0} are the input/output masks used to derive the bit from each
plaintext/ciphertext pair, and where (see also Definition 8.6)

ELPa,b(C) = EC (LPa,b(C)) with LPa,b(c) = (2PrP [a • P = b • c(P )]− 1)2 ,

the random variable P ∈ {0, 1}n being uniformly distributed. In [155], Vaudenay shows
that there is a link between the expected linear probability of a block cipher C and its
2-wise distribution matrix, namely,

∣∣∣∣ELPa,b(C)− 1
2n − 1

∣∣∣∣ = |ELPa,b(C)− ELPa,b(C?)| ≤ |||[C]2 − [C?]2|||∞. (10.1)

Through Theorem 10.1, this shows that upper-bounding the advantage of the best 2-
limited non-adaptive adversary against C by a negligible value allows to prove that C
is immune against linear cryptanalysis.

Differential cryptanalysis [21, 23, 24] is a chosen plaintext attack introduced
by Biham and Shamir. It works by randomly selecting pairs of plaintexts having a
chosen fixed difference, asking the corresponding ciphertexts and checking whether their
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1: for t = 1, 2, . . . , q do

2: P ← {0, 1}n
3: if c(P ⊕ a) = c(P )⊕ b then output 1 endif

4: done

5: output 0

Algorithm 10.2: A q-limited differential distinguisher with oracle access to a
permutation c on {0, 1}n, based on the input/output differences a, b ∈ {0, 1}n\{0}.

difference is equal to particular chosen value. Algorithm 10.2 gives a general description
of a q-limited differential distinguisher.

It is a well accepted fact that the data complexity of an effective differential
distinguisher between C and C? should at least be close to

1
EDPa,b(C)

,

where a, b ∈ {0, 1}n \ {0} are the input/output differences and where

EDPa,b(C) = EC (DPa,b(C)) with DPa,b(c) = PrP [c(P ⊕ a) = c(P )⊕ b],

the random variable P ∈ {0, 1}n being uniformly distributed [124]. Similarly than what
we have in (10.1), Vaudenay shows in [155] that

∣∣∣∣EDPC(a, b)− 1
2n − 1

∣∣∣∣ = |EDPC(a, b)− EDPC?(a, b)| ≤ 1
2
|||[C]2 − [C?]2|||∞. (10.2)

Theorem 10.1 allows to conclude that upper-bounding the advantage of any 2-limited
non-adaptive adversary against C by some negligible value allows to conclude that C is
secure against differential cryptanalysis.

In certain circumstances, bounding the advantage of the best 2-limited non-
adaptive adversary also allows to prove some resistance to iterated attacks [154, 155],
which formalize a large class of attacks against block ciphers, including linear and dif-
ferential cryptanalysis. In an iterated attack of order d, the adversary is given a sample
(P, C) = ((P1, P2, . . . , Pd), (C1, C2, . . . , Cd)), where Ci = C(Pi) for i = 1, 2, . . . , d, and
keeps one bit of information denoted F(P,C). After q iterations, the distinguisher de-
cides which hypothesis is most likely, based on the q bits. The q samples are assumed
to be mutually independent and identically distributed. Algorithm 10.3 describes a
iterated distinguisher of order d.

It is easy to see that linear cryptanalysis is an iterated attack of order 1: let
d = 1, T = {0, 1}n, assume that the distribution of P1 is uniform and define the
increment rule as D = {(p, c) ∈ {0, 1}n × {0, 1}n : a • p = b • c}. Letting A = {c ∈
{0, 1, . . . , q} :

∣∣c− q
2

∣∣ > T} leads to a linear distinguisher based on the input/output
masks a, b ∈ {0, 1}n and threshold T .
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1: c← 0

1: for t = 1, 2, . . . , q do

2: P = (P1, P2, . . . , Pd)← T d and C = (C1, C2, . . . , Cd)← (c(P1), c(P2), . . . , c(Pd))

3: if (P, C) ∈ D then c← c + 1 endif

4: done

5: if c ∈ A then output 1 else output 0 endif

Algorithm 10.3: A q-limited iterated distinguisher of order d with oracle access
to a permutation c on the finite set T , with an increment rule D ⊂ T d × T d and
an acceptance region A ⊂ {0, 1, . . . , q}.

Similarly, differential cryptanalysis is an iterated attack of order 2: let d = 2,
T = {0, 1}n (for simplicity we stick to binary ciphers, although this is not mandatory
here). Let the increment rule be

D = {(p1, p2, c1, c2) ∈ {0, 1}4n : p1 ⊕ p2 = a and c1 ⊕ c2 = b}

for some a, b ∈ {0, 1}n \ {0} and assume that the distribution of P1 is uniform and that
P2 = P1⊕a. Letting finally A = {1, 2. . . . , q} (i.e., the distinguisher outputs 1 whenever
the counter has been incremented, that is, whenever c(P1⊕a) = c(P1)⊕b for one of the
q random values of P1) we obtain a differential distinguisher based on the input/output
differences a, b.

Unlike linear and differential cryptanalysis, bounding the advantage of the
best d-limited non-adaptive distinguisher is not sufficient in general to provide security
against iterated attacks of order d, Vaudenay provides a counter example in [155].
However he shows that bounding the advantage of the best 2d-limited non-adaptive
adversary can be sufficient.

Theorem 10.3 (Theorem 18 in [155]) Let C : T → T be a block cipher such that

|||[C]2d − [C?]2d|||∞ ≤ ε

for some d ≤ |T |
2 and ε > 0, where C? is the perfect cipher on T . Let q be a positive

integer. The advantage Adv of the best q-limited iterated distinguisher of order d between
C and C? is such that

Adv ≤ 5 3

√(
2δ +

5d2

2 |T | +
3ε

2

)
q2 + qε,

where δ is the probability that any two different iterations send at least one query in
common.

Note that the bound given by the previous theorem is meaningful only if δ is
not too large, which can only occur if T is large enough. In what follows, we assume
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that whenever ε is negligible, then the block cipher is immune against iterated attacks
of order d. For the particular case of iterated attacks of order 1, we easily obtain the
following corollary.

Corollary 10.1 Let C : T → T be a block cipher such that the advantage of the best
2-limited non-adaptive distinguisher between C and C? is upper-bounded by ε > 0, where
C? is the perfect cipher on T . Let q be a positive integer. The advantage Adv of the
best q-limited iterated distinguisher of order 1 between C and C? is such that

Adv ≤ 9 3

√(
1
|T | + ε

)
q2 + 2qε,

Proof. Noting that δ = 1
|T | in this case easily leads to the announced result.

The previous lemma shows that if ε ≈ 1
|T | , then no q-limited iterated distin-

guisher of order 1 can efficiently distinguish the block cipher from the perfect cipher
when q is negligible compared to

√
|T |.

10.4 Decorrelation of Feistel Ciphers

A r-rounds Feistel scheme [50] is a construction that turns r random functions

F1,F2, . . . , Fr : T → T
(where T is some finite set) into a random permutation

Ψ(F1,F2, . . . ,Fr) : T 2 → T 2

as shown on Figure 10.3. It is easy to see that this defines a permutation since

Ψ−1(F1, F2, . . . ,Fr) = Ψ(Fr, Fr−1, . . . ,F1).

A Feistel cipher is a block cipher based on a Feistel scheme, the best known example
being probably the DES [122] which is based on a 16-rounds Feistel scheme. We recall
here a famous result by Luby and Rackoff about 3-rounds Feistel schemes.

Theorem 10.4 (Theorem 1 in [102]) Let n be a positive integer and let F?
1, F

?
2, F

?
3 :

{0, 1}n → {0, 1}n be three independent and uniformly distributed random functions.
Let q be a positive integer. The advantage of the best q-limited adaptive distinguisher
between Ψ(F?

1, F
?
2, F

?
3) and the perfect cipher C? on {0, 1}2n is upper-bounded by q2 · 2−n.

This result generalizes to r-rounds Feistel schemes as follows.

Theorem 10.5 (Theorem 21 in [155]) Let n and q be two positive integers. Let F? be
a uniformly distributed random function on {0, 1}n. Let F1, F2, . . . ,Fr be r independent
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F1

F2

Fr

⊕

⊕

⊕

Figure 10.3: An r rounds Feistel scheme Ψ(F1,F2, . . . ,Fr)

random functions on {0, 1}n such that

AdvAq(Fi,F
?) ≤ ε

for i = 1, 2, . . . , r and for any q-limited adversary Aq. Let C = Ψ(F1, F2, . . . ,Fr) be an
r-rounds Feistel cipher on {0, 1}2n and let C? denote the perfect cipher on the same set.
For any q-limited adversary Aq and for any integer k ≥ 3 we have

AdvAq(C, C?) ≤ 1
2

(
2kε +

2q2

2n

)br/kc
.

If we let Fi = F? for all i = 1, 2, . . . , r in the previous theorem, we obtain ε = 0.
Setting r = k = 3 allows to fall back on the Luby and Rackoff result.

This theorem shows that if we can instantiate independent random functions
secure against all q-limited distinguishers, we can obtain a block cipher provably secure
against any q-limited distinguisher.
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S1 S2 Sℓ

m

(a)

m

F1 F2 Fℓ

(b)

Figure 10.4: Layers of ` bijective random S-boxes and of ` random F-boxes on m-bit
strings

10.5 Decorrelation Modules: Avoiding Algebraic Construc-

tions

In this section we will study the main building blocks that we will use in the
secure constructions that we will introduce in chapters 11 and 12. As we will see, these
building blocks are particularly well suited to prove results against 2-limited adversaries.
Throughout this section, we will be using the following definitions and notations about
arrays of bit strings.

Definition 10.3 Let a = (a1, a2, . . . , a`) be an array of m-bit strings. The support of
a is the array of {0, 1}` with 0’s at the positions where the entry of a is equal to zero
and with 1’s where the entry of a is non-zero. We denote the support of a by supp(a).
The support of a is said to be included in the support of b when ai 6= 0 ⇒ bi 6= 0 for
all i = 1, 2, . . . , `. This is denoted supp(a) ⊆ supp(b). The Hamming weight of a (or
of supp(a)) is the number of 1’s of supp(a). We denote this weight by w(a). When
w(a) = `, it means that all the entries of a are non-zero, in which case we say that a is
of full support.

Layer of S-Boxes

We consider a layer made of ` mutually independent and uniformly distributed
permutations on {0, 1}m, arranged side by side. This situation is represented on Fig-
ure 10.4(a). These permutations are called substitution boxes and we denote them by
S1 through S`. The complete layer is denoted S and is a random permutation defined
on {0, 1}m`. Let M = 2m. For any of the ` uniformly distributed random substitution
boxes Si and any ai, a

′
i, bi, b

′
i ∈ {0, 1}m, we have

Pr[Si(ai) = bi, Si(a′i) = b′i] =





1
M if ai = a′i and bi = b′i,

1
M(M−1) if ai 6= a′i and bi 6= b′i,

0 otherwise.
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The last equation can be also written in a more compact form, namely,

Pr[Si(ai) = bi, Si(a′i) = b′i] = 1supp(ai⊕a′i)=supp(bi⊕b′i)M
−1(M − 1)−w(ai⊕a′i). (10.3)

Letting a = (ai)i, a′ = (a′i)i, b = (bi)i, and b′ = (b′i)i with i = 1, 2, . . . , ` and ai, a
′
i, bi, b

′
i ∈

{0, 1}m for all i, we have

[S]2(a,a′),(b,b′) = Pr
[
∩`

i=1(ai, a
′
i)

Si−→ (bi, b
′
i)

]
=

∏̀

i=1

Pr[Si(ai) = bi, Si(a′i) = b′i], (10.4)

as the ` substitution boxes are assumed to be independent. Equations (10.3) and (10.4)
lead to

[S]2(a,a′),(b,b′) = 1supp(a⊕a′)=supp(b⊕b′)M
−`(M − 1)−w(a⊕a′). (10.5)

Layer of F-Boxes

We consider a layer made of ` mutually independent and uniformly distributed
functions on {0, 1}m, arranged side by side. This situation is represented on Fig-
ure 10.4(b). These functions are called F-Boxes and we denote them by F1 through
F`. The complete layer is denoted F and is a random function defined on {0, 1}m`. Let
M = 2m. For any of the ` uniformly distributed random substitution box Si and any
ai, a

′
i, bi, b

′
i ∈ {0, 1}m, we have

Pr[Fi(ai) = bi, Fi(a′i) = b′i] =





1
M2 if ai 6= a′i,
1
M if ai = a′i and bi = b′i,
0 otherwise.

In a more compact form, this reads

Pr[Fi(ai) = bi,Fi(a′i) = b′i] = 1supp(bi⊕b′i)⊆supp(ai⊕a′i)M
−1−w(ai⊕a′i),

using the notations of Definition 10.3. From the last equation and the fact that the
F-boxes are assumed to be independent, we conclude that

[F]2(a,a′),(b,b′) = 1supp(b⊕b′)⊆supp(a⊕a′)M
−`−w(a⊕a′), (10.6)

where a = (ai)i, a′ = (a′i)i, b = (bi)i, and b′ = (b′i)i with i = 1, 2, . . . , ` and ai, a
′
i, bi, b

′
i ∈

{0, 1}m for all i.

Transition Matrices: Pair of Texts ↔ Support of Pair

From (10.5) and (10.6), one can see that the 2-wise distribution matrices of
both S and F-box layers only depend on the supports of the exclusive-or of the inputs
and of the support of the exclusive-or of the outputs. To take advantage of this fact
in futures computations, we will introduces two transition matrices, that we denote PS
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and SP, which respectively map pair of texts to support of pair and the converse, in
a uniform way. When considering arrays of ` strings in {0, 1}m (as in both previous
examples), we let PS be the 22m` × 2` matrix defined by

PS(a,a′),γ = 1γ=supp(a⊕a′) (10.7)

for all a = (ai)i (resp. a′ = (a′i)i) with i = 1, 2, . . . , ` and ai, a
′
i ∈ {0, 1}m for all i, and

all γ ∈ {0, 1}`. Similarly, we let SP be the 2` × 22m` matrix defined by

SPγ,(a,a′) = 1γ=supp(a⊕a′)M
−`(M − 1)−w(γ), (10.8)

where M = 2m.

Lemma 10.3 The transition matrices SP and PS are such that

SP× PS = Id and PS× SP = [S]2,

where [S]2 is the 2-wise distribution matrix of a layer of S-boxes as in (10.5).

Proof. We note that for all γ, γ′ ∈ {0, 1}` we have

(SP× PS)γ,γ′ = M−`(M − 1)−w(γ)
∑

a,a′
1γ=supp(a⊕a′)1γ′=supp(a⊕a′)

= 1γ=γ′M
−`(M − 1)−w(γ)

∑

a,a′
1γ=supp(a⊕a′)

= 1γ=γ′(M − 1)−w(γ)
∑

a

1γ=supp(a)

= 1γ=γ′ ,

which proves the first equality. For all a, a′, b, b′ ∈ {0, 1}m` we have

(PS× SP)(a,a′),(b,b′) = M−`
∑

γ

1γ=supp(a⊕a′)1γ=supp(b⊕b′)(M − 1)−w(γ)

= 1supp(a⊕a′)=supp(b⊕b′)M
−`(M − 1)−w(a⊕a′),

which exactly corresponds to the expression of [S]2(a,a′),(b,b′) obtained in (10.5).

The following lemma shows how the transition matrices SP and PS apply when
considering a layer of F-boxes.

Lemma 10.4 Using the notations of this section, letting F be the 2`×2` matrix indexed
by supports, defined by

Fγ,γ′ = 1γ′⊆γM−w(γ)(M − 1)w(γ′),

we obtain
[F]2 = PS× F× SP.
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Proof. Starting from the expression of [F]2 in (10.6), we have

[F]2(a,a′),(b,b′) = 1supp(b⊕b′)⊆supp(a⊕a′)M
−`−w(a⊕a′)

∑

γ,γ′
1γ=supp(a⊕a′)1γ′=supp(b⊕b′)

=
∑

γ,γ′
1γ=supp(a⊕a′)1γ′⊆γM−`−w(γ)1γ′=supp(b⊕b′)

=
∑

γ,γ′
PS(a,a′),γ1γ′⊆γM−w(γ)(M − 1)w(γ′)SPγ′,(b,b′)

=
∑

γ,γ′
PS(a,a′),γFγ,γ′SPγ′,(b,b′),

which allows to conclude.

We conclude the list of fundamental properties of the transition matrices SP
and PS by the following lemma, which shows how these matrices will allow us to dras-
tically reduce the complexity of computations in the constructions’ security proofs that
we will present in later chapters.

Lemma 10.5 Let M be a 22m`×22m` matrix indexed by pairs of `-tuples of m-bit strings,
such that there exists a 2` × 2` matrix M indexed by `-bit strings verifying

M = PS×M× SP.

Then
‖M‖a = |||M|||∞ = |||M|||∞.

Proof. Using the definition of the ‖ · ‖a given in Definition 10.2 we have

‖M‖a = max
a

∑

b

max
a′

∑

b′

∣∣∣
(
PS×M× SP

)
(a,a′),(b,b′)

∣∣∣

= max
a

∑

b

max
a′

∑

b′

∣∣∣∣∣∣
∑

γ,γ′
PS(a,a′),γMγ,γ′SPγ′,(b,b′)

∣∣∣∣∣∣
= max

a

∑

b

max
a′

∑

b′

∣∣∣Msupp(a⊕a′),supp(b⊕b′)M
−`(M − 1)−w(b⊕b′)

∣∣∣

= M−` max
a

∑

b

max
a′

∑

b′

∣∣Msupp(a⊕a′),supp(b⊕b′)
∣∣ (M − 1)−w(b⊕b′)

= M−` max
a

∑

b

max
a′

∑

γ′

∣∣Msupp(a⊕a′),γ′
∣∣ (M − 1)−w(γ′)

∑

b′
1γ′=supp(b⊕b′).
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Since for all b we have

(M − 1)−w(γ′)
∑

b′
1γ′=supp(b⊕b′) = 1,

the sum over b cancels the M−` term, so that

‖M‖a = max
a,a′

∑

γ′

∣∣Msupp(a⊕a′),γ′
∣∣ = max

γ

∑

γ′

∣∣Mγ,γ′
∣∣ .

Similar computations clearly lead to the same expression for |||M|||∞.

Lemma 10.5 shows that if the 2-wise distribution matrices of two random
functions (resp. permutations) only depend on the support of the exclusive-or of their
inputs and on the support of the exclusive-or of their outputs, then the best 2-limited
adaptive adversary between these two functions is not more powerful than the best 2-
limited non-adaptive adversary. This situation occurs for example in the computation
of the RF/RP advantage in Example 10.3.

Conclusion

The two building blocks presented here will build the core of the two block
cipher constructions of the following two chapters. Essentially, the constructions we
will introduce will alternate these S-box and F-box layers with well chosen linear layers
that will make it possible to reduce even further the complexity of the computations
that are necessary to compute the respective advantages of the best 2-limited adaptive
and non-adaptive distinguishers.
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Dial C for Cipher:

Provable Security against Common Attacks

The block cipher C is the first of the two provably secure block cipher con-
structions that we propose. At a very high level, C is based on the same substitution-
permutation network than that of the Advanced Encryption Standard (AES [41]), ex-
cept that the layers made of fixed substitution boxes are replaced by perfectly random
and independent S-boxes. The key-schedule of C is based on the Blum-Blum-Shub
pseudo-random generator [29] and, as a consequence, is probably the slowest (but the
more secure) key schedule ever suggested for a concrete construction. We provide a
detailed description of C and of its key schedule in Section 11.1. Ensues a review of
all security results on C, starting with those which are proved in sections 11.2 through
11.7, and going on with some results in Section 11.8 which, though not proved, seem
quite reasonable. We then present a way of considerably speeding up the key schedule
while preserving all security results and finish with implementation considerations. We
conclude this chapter with practical considerations in section 11.9 and 11.10.

Throughout this chapter, a perfectly random permutation denotes a random
permutation uniformly distributed among all possible permutations on the appropriate
set. Consequently, when referring to a random permutation, nothing is assumed about
its distribution.

11.1 A Description of the Block Cipher C

High Overview

The block cipher C : {0, 1}128 → {0, 1}128 is an iterated block cipher. It is made
of a succession of rounds, all identical in their structure. Each round is parameterized
by a round-key which is derived from the main 128-bit secret key using a so-called key
schedule algorithm. The structure of each round is made of a (non-linear) substitution
layer followed by a (linear) permutation layer. The non-linear part of the round mixes
the key bits with the text bits in order to bring confusion (in the sense of [139]). The
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a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

p0,0 p0,1 p0,2 p0,3

p1,0 p1,1 p1,2 p1,3

p2,0 p2,1 p2,2 p2,3

p3,0 p3,1 p3,2 p3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

a0,0 a0,1 a0,2 a0,3

a1,0a1,1 a1,2 a1,3

a2,0 a2,1a2,2 a2,3

a3,0 a3,1 a3,2a3,3

S0,2

ROTL3









02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02









× ·

Figure 11.1: One full round of C

linear part dissipates the eventual redundancy, bringing diffusion. Such an iterated
block cipher is often referred to as a substitution-permutation network (SPN). Several
modern block ciphers (such as the AES [41] or SAFER [107]) follow this structure. In
what follows, we successively detail the SPN of C and its key schedule algorithm.

The Substitution-Permutation Network

In a nutshell, C follows the same SPN as the AES [41], except that there
is no round key addition, that the fixed substitution box is replaced by independent
perfectly random permutations, and that the last round of C only includes the non-
linear transformation.

C is made of r = 10 independent rounds R(1), . . . , R(r) : {0, 1}128 → {0, 1}128,
so that C = R(r) ◦ · · · ◦ R(1). A r round version of C will either be denoted by C[r] or
simply by C when the number of rounds is clear from the context. A full round of C

is shown on Figure 11.1. Each round considers the 128-bit text input as a four by four
array of bytes seen as elements of the finite field GF(s) where s = 28. Consequently, if
a ∈ {0, 1}128 denotes some input of the round transformation, we will denote a` (resp.
ai,j) the `-th (resp. the (i+4j)-th) byte of a for 0 ≤ ` ≤ 15 (resp. 0 ≤ i, j ≤ 3) and call
such an input a state. Following Definition 10.3, the support supp(a) of a state a is a
four by four array with 0’s where the corresponding entry of a is zero and 1’s everywhere
else. The Hamming weight of a (or of supp(a)) is the number of 1’s of supp(a). We
denote this weight by w(a). When w(a) = 16, it means that all the entries of the state
a are non-zero, in which case we say that a is of full support.

Except for the last one, each round R(i) successively applies a non-linear
transformation S(i) followed by a linear transformation L so that R(i) = L ◦ S(i) for
i = 1, . . . , r−1. The last round R(r) excludes the linear transformation, i.e., R(r) = S(r).

The non-linear transformation S(i) is a set of 16 independent and perfectly
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random permutations1 of GF(s). Denoting S(i) = {S(i)
0 , . . . ,S

(i)
15} the 16 permutations

of round i and a, b ∈ {0, 1}128 the input and the output of S(i) respectively, we have b =
S(i)(a) ⇔ b` = S

(i)
` (a`) for 0 ≤ ` ≤ 15. Depending on the level of security/performance

one wants to achieve, the round permutations can be de-randomized (see Section 11.9).
The linear transformation L does not depend on the round number. It first

applies a rotation to the left on each row of the input state (considered as a four by
four array), over four different offsets. A linear transformation is then applied to each
column of the resulting state. More precisely, if a, b denote the input and the output of
L respectively, we have (considering indices modulo 4):




b0,j

b1,j

b2,j

b3,j


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


×




a0,j

a1,j+1

a2,j+2

a3,j+3




The linear transformation exactly corresponds to the succession of the transformations
ShiftRows and MixColumns defined for the AES.

The Key-Schedule Algorithm

Generating a perfectly random permutation of {0, 1}8. As there are 28! pos-
sible permutations of {0, 1}8, it is possible to define a one to one mapping between
{0, 1, . . . , 28! − 1} and the set of permutations of {0, 1}8. The mapping we choose is
described in Algorithm 11.1. We simply need to derive pseudo-random integers in
{0, 1, . . . , 28!−1} from the 128-bit secret key. As each of the ten rounds involves 16 per-
mutations, we need 160 such integers, representing a total of 160 · ⌈log2(28!)

⌉
= 269 440

pseudo-random bits.

Deriving an extended key from the secret key.

Definition 11.1 An extended key of C[r] is a set of 16 · r integers in {0, 1, . . . , 28!− 1}.

In order to derive an extended key from the 128 secret key, we need to generate
16 · r pseudo-random integers of {0, 1, . . . , 28!− 1}. We propose to use the Blum-Blum-
Shub pseudo-random number generator [30].

Definition 11.2 A prime p is a strong-prime if (p − 1)/2 is prime. A prime p is a

1Note that a random 8-bit permutation is usually more biased than the substitution box of the
AES [126,167]. However this bias is key-dependent and thus does not represent a threat. Biases on the
AES box are independent of the key and thus can help to distinguish (reduced rounds of) the AES from
the perfect cipher when the key is unknown. Exploiting the strong bias of the substitution boxes of C

requires to know the location of this bias, which is impossible without the knowledge of the permutation
that was used (i.e., of the key). For instance the maximum ELP of the transformation made of a random
key addition followed by the AES substitution box is 2−6 whereas the perfectly random substitution
boxes we use have a maximum ELP of 1/(s − 1) ≈ 2−8. Intuitively, a cipher cannot become weaker
when replacing an (arbitrary) random permutation by a perfectly random permutation.
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Input: An integer 0 ≤ κ < 28!
Output: A table π of size 256 such that π[0], . . . , π[255] ∈ {0, . . . , 255} is a

permutation of {0, 1}8 uniquely defined by κ
EucDiv(a,b): returns the quotient and remainder of the Euclidean division of a

by b.
q ← κ, π[0]← 0, π[1]← 1 , . . . , π[255]← 2551:

for m = 256, . . . , 1 do2:

(q, r)← EucDiv(q,m)3:

Swap the values of π at positions r and m− 14:

end5:

Algorithm 11.1: Defining a one to one mapping from integers between 0 and 28!
onto the set of permutations of {0, 1}8.

strong-strong-prime if both p and (p− 1)/2 are strong-primes.

Let p and q be two (fixed) 1024-bit strong-strong-prime numbers2, and let n =
p·q. Considering the secret key k as a 128-bit integer, let {xi ∈ Z∗n : i = −1, 0, 1, 2, . . . }
be the sequence defined by

{
x−1 = k · 2894 + 21023 and
xi = x2

i−1 mod n for i ≥ 0.

Let BBS = a1b1a2b2 . . . be the pseudo-random bit string where ai, bi ∈ {0, 1} respec-
tively denote the least and most significant3 bits of xi. We will use BBS to generate
the 160 integers we need.

Dividing the BBS sequence into dlog2(28!)e-bit substrings, we obtain pseudo-
random integers in {0, 1, . . . , 2dlog2(28!)e − 1}, thus sometimes larger than 28!. A naive
approach to deal with those too large integers is to discard the substrings leading to
such integers, thus having to generate dlog2(28!)e more bits each time this happens.
This strategy requires the generation of 160 · 2dlog2(28!)e/28! ≈ 270 134 pseudo-random
bits in average. More efficient approaches exits (e.g., discarding only a few bits instead
of a whole block), but the improvement in terms of efficiency is not worth the loss in
terms of clarity.

2Note that strong-strong-primes are always congruent to 3 modulo 4, i.e., are Blum integers. We
use strong-strong primes to ensure that the generator will have a long period. See Section 11.7 for more
details.

3the most significant bit corresponds to being larger or smaller than (n− 1)/2.
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11.2 Exact Security against 2-limited Adversaries

Adaptive vs. Non-Adaptive Adversaries

We will now apply the Decorrelation Theory results from Chapter 10 to com-
pute the exact advantage of the best 2-limited adaptive and non-adaptive distinguishers
against an r round version of C, assuming that the extended key of C[r] is uniformly
distributed. This assumption comes down to assume that the random substitution boxes
are mutually independent and uniformly distributed.

We have C = R(r) ◦ · · · ◦ R(1) where each round R(i) is equal to L ◦ S(i), except
for the last round R(r) which is equal to S(r). Consequently we have

C = S(r) ◦ L ◦ S(r−1) ◦ · · · ◦ S(i) ◦ L ◦ S(i−1) ◦ · · · ◦ S(2) ◦ L ◦ S(1).

Since we assume here that the substitution boxes are independent, then so are the S(i)’s.
From Lemma 10.1, the previous equation leads to

[C]2 = [S(1)]2× [L]2× [S(2)]2×· · ·× [S(i−1)]2× [L]2× [S(i)]2×· · ·× [S(r−1)]2× [L]2× [S(r)]2.

Since each non-linear substitution layer has the same 2-wise distribution matrix, we
simply denote it [S]2 and obtain

[C]2 = ([S]2 × [L]2)r−1 × [S]2. (11.1)

Since we assume in this section that the random substitution boxes are independent
and uniformly distributed, we note that the S layer exactly corresponds to the S-box
layer studied in Section 10.5. Using the two matrices PS and SP respectively defined in
(10.7) and (10.8), and which verify (according to Lemma 10.3)

SP× PS = Id and PS× SP = [S]2,

we note that (11.1) can be simplified to

[C]2 = (PS× SP× [L]2)r−1 × PS× SP = PS× (L)r−1 × SP (11.2)

where
L = SP× [L]2 × PS. (11.3)

Note that L is a 216 × 216 matrix indexed by supports. On the other hand, we have
from Lemma 10.2 that

[C?]2 = [S]2 × [C?]2 × [S]2 = PS× C? × SP, (11.4)

where C? is the 216 × 216 matrix indexed by supports and defined by

C? = SP× [C?]× PS. (11.5)
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From (11.2) and (11.4) we obtain

[C]2 − [C?]2 = PS× (
(L)r−1 − C?

)× SP

and thus, according to Lemma 10.5 we deduce the following result.

Lemma 11.1 The best 2-limited adaptive adversary Aa against an r > 1 round version
of C is not more powerful than the best 2-limited non-adaptive adversary Ana. Moreover,

AdvAa(C[r],C?) = AdvAna(C[r],C?) =
1
2
|||(L)r−1 − C?|||∞, (11.6)

where L and C? are two 216 × 216 matrices respectively defined in (11.3) and (11.5).

Computation of the Advantage of the Best 2-limited Adversary

Although Lemma 11.1 shows that the computation of the advantage of the best
2-limited (non-)adaptive adversary by means of distribution matrices comes down to a
computation on 216 × 216 matrices, we see that since a matrix multiplication roughly
takes (216)3 field operations4 and, using a square and multiply technique, log r such
multiplications are needed, the overall number of operations needed to compute (L)r−1

is roughly equal to 250 (for 8 rounds) by using 2×232 multiple precision rational number
registers. This is still pretty hard to implement using ordinary hardware. Nevertheless,
from one computation of (L)r−1 we could deduce all expected linear probabilities over
all possible input/output masks almost for free.

We will now show how to make the computation of the advantage less complex.
Starting from (11.3) we have for all supports γ, γ′ that

Lγ,γ′ =
∑

a,a′,b,b′
SPγ,(a,a′)[L]2(a,a′),(b,b′)PS(b,b′),γ′

= s−16(s− 1)−w(γ)
∑

a,a′
1γ=supp(a⊕a′)1γ′=supp(L×(a⊕a′))

= (s− 1)−w(γ)
∑

a

1γ=supp(a)1γ′=supp(L×(a)).

We summarize this result in the following lemma.

Lemma 11.2 For all supports γ and γ′, let N[γ, γ′] be the number of ways of connecting
a support γ to a support γ′ through L, i.e.,

N[γ, γ′] =
∣∣{supports a such that supp(a) = γ and supp(L× a) = γ′}∣∣ .

For all supports γ and γ′ we have

Lγ,γ′ = (s− 1)−w(γ)N[γ, γ′].
4Using Strassen’s algorithm, the complexity drops to (216)log 7 field operations [161].
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Figure 11.2: The four column’s and diagonal weights of a support γ

We will see that, thanks to the properties of the linear transformation L,
N[γ, γ′] only depends on the weights of the diagonals of γ and of those of the columns
of γ′. We introduce notations to deal with Hamming weights of columns and diagonals.
We denote by

cγ = (cγ
1 , cγ

2 , cγ
3 , cγ

4), (11.7)

the vector of the four weights of γ’s columns. Similarly, we denote by

dγ = (dγ
1 , dγ

2 , dγ
3 , dγ

4), (11.8)

the vector of the four weights of γ’s diagonals. What we mean by columns and diagonals
should be clear from Figure 11.2.

The MixColumns operation is a linear multipermutation [150], as the set of
all codewords (a, MixColumns(a)) is a [8, 4, 5] MDS code. For this reason, N[γ, γ′] can
be computed by means of a fundamental result from El-Khamy and McEliece [48]
(Theorem 11.2 is actually a direct consequence of Theorem 3 in [48]).

Theorem 11.1 (Theorem 6 in [105]) Let C be a (n, k, d)-MDS code on GF(s), so
that d = n − k + 1. The weight enumerator WC of C is the weight repartition of the
codewords of C, i.e.,

WC(w) = |{c ∈ C : w(c) = w}|
and verifies WC(0) = 1, WC(w) = 0 for all 1 ≤ w < d, and

WC(w) =
(

n

w

) w∑

j=d

(
w

j

)
(−1)w−j(sj−d+1 − 1)

for d ≤ w ≤ n.

Theorem 11.2 Let C be a (2`, k, d)-MDS code on GF(s), so that d = 2`−k+1. For any
codeword c = (c1, c2) ∈ C, where c1 (resp. c2) denotes the first (resp. last) ` coordinates
of c, let

W2
C(w1, w2) = |{c = (c1, c2) ∈ C : w(c1) = w1 and w(c2) = w2}| .
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We have

W2
C(w1, w2) =WC(w1 + w2)

(
`

w1

)(
`

w2

)
(

2`
w1+w2

) .

As a consequence, the value of N[γ, γ′] is uniquely determined by the weights
dγ = (dγ

1 , dγ
2 , dγ

3 , dγ
4) of the four diagonal of γ and by the weights cγ′ = (cγ′

1 , cγ′
2 , cγ′

3 , cγ′
4 )

of the four columns of γ′. More precisely, denoting C the MDS code defined by the
MixColumns operation and using Theorem 11.2, we have

N[γ, γ′] =
4∏

s=1

W2
C(d

γ
s , cγ′

s )(
4
dγ

s

)( 4

cγ′
s

) =
4∏

s=1

WC(d
γ
s + cγ′

s )( 8

dγ
s +cγ′

s

) , (11.9)

where WC(·) is given by Theorem 11.1. From this last equation and from Lemma 11.2
we deduce the following lemma.

Lemma 11.3 For all supports γ and γ′ we have

Lγ,γ′ =
4∏

s=1

WC(d
γ
s + cγ′

s )( 8

dγ
s +cγ′

s

) (s− 1)−dγ
s ,

where dγ = (dγ
1 , dγ

2 , dγ
3 , dγ

4) are the respective weights of the four diagonals of γ and
where cγ′ = (cγ′

1 , cγ′
2 , cγ′

3 , cγ′
4 ) are the respective weights of the four columns of γ′.

The previous lemma shows that Lγ,γ′ actually only depends on dγ and on cγ′ .
Introducing two new transition matrices will allow us to exploit this dependency in
order to reduce the size of the matrices needed to compute the final advantage. We let
SW be the 216×54 matrix which rows and columns are respectively indexed by supports
and 4-tuple of weights in {0, 1, . . . , 4}, and defined by

SWγ,w = SWγ,(w1,w2,w3,w4) = 1dγ=w =
4∏

s=1

1dγ
s =ws

(11.10)

using the notation defined in (11.8). Similarly, we let WS be the 54 × 216 matrix which
rows and columns are respectively indexed by 4-tuple of weights in {0, 1, . . . , 4} and
supports, and defined by

WSw,γ = 1cγ=w

4∏

s=1

(
4
ws

)−1

, (11.11)

using the notation defined in (11.7). Letting

P[w, w′] =
∣∣{supports γ such that cγ = w and dγ = w′}∣∣ =

∑
γ

1cγ=w1dγ=w′ , (11.12)
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we see that for all w, w′ ∈ {0, 1, . . . , 4}4 the transition matrices WS and SW are such
that

(WS× SW)w,w′ = P[w,w′]
4∏

s=1

(
4
ws

)−1

=
P[w, w′]∑
w′′ P[w, w′′]

.

In the rest of this section, we let W be the 54× 54 matrix indexed by 4-tuple of weights
in {0, 1, . . . , 4} and defined by

Ww,w′ = (WS× SW)w,w′ =
P[w, w′]∑
w′′ P[w,w′′]

. (11.13)

Lemma 11.4 Let M be 216 × 216 matrix indexed by supports, such that there exists a
54 × 54 matrix M indexed by 4-tuple of weights in {0, 1, . . . , 4} verifying

M = SW ×M×WS

where SW and WS are defined in (11.10) and in (11.11) respectively. Then

|||M|||∞ = |||M|||∞.

Proof. By definition of the ||| · |||∞ norm, of SW in (11.10) and of WS in (11.11) we
have

|||M|||∞ = max
γ

∑

γ′

∣∣∣∣∣∣
∑

w,w′
1dγ=wMw,w′1cγ′=w′

4∏

s=1

(
4
w′s

)−1
∣∣∣∣∣∣

= max
γ

∑

γ′

∣∣∣Mdγ ,cγ′
∣∣∣

4∏

s=1

(
4

cγ′
s

)−1

= max
γ

∑

w′

∣∣∣Mdγ ,w′
∣∣∣
(

4∏

s=1

(
4
w′s

)−1
)∑

γ′
1w′=cγ′

︸ ︷︷ ︸
=1

since the sum on the supports γ′ counts the number of supports with given column
weights w′ = (w′1, w

′
2, w

′
3, w

′
4). This leads to

|||M|||∞ = max
γ

∑

w′

∣∣∣Mdγ ,w′
∣∣∣ = max

w∈{0,...,4}4
∑

w′

∣∣∣Mw,w′
∣∣∣ = |||M|||∞.

From the expression we obtained for L in Lemma 11.3, it is easy to see that
letting L be the 54×54 matrix indexed by 4-tuple of weights in {0, 1, . . . , 4} and defined
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by

Lw,w′ =
4∏

s=1

(
4
w′s

)WC(ws + w′s)(
8

ws+w′s

) (s− 1)−ws ,

we have
L = SW × L×WS. (11.14)

Plugging this result in the expression we obtained for [C]2 in (11.2), we get (for r ≥ 2)

[C]2 = PS× (SW × L×WS)r−1 × SP

= PS× SW × (L×W)r−2 × L×WS× SP, (11.15)

where W is the 54 × 54 matrix defined in (11.13).
To conclude we need to show that the distribution matrix of the perfect cipher

can also be written in similar way. For all states a, a′, b, b′ we clearly have

[C?]2(a,a′),(b,b′) = 1a 6=a′
b6=b′

s−16(s16 − 1)−1 + 1a=a′
b=b′

s−16.

This can be written in terms of the weights of the diagonals of supp(a⊕ a′) and of the
weights of the columns of supp(b ⊕ b′) respectively, and thus expressed as a product
PS× SW × · ×WS× SP. First noting that

(PS× SW)(a,a′),w = 1dsupp(a⊕a′)=w

and

(WS× SP)w,(a,a′) = 1csupp(a⊕a′)=ws−16
4∏

s=1

(s− 1)−ws

(
4
ws

)−1

,

it is easy to show that

[C?]2(a,a′),(b,b′) = 1
dsupp(a⊕a′) 6=0

csupp(b⊕b′) 6=0

s−16(s16 − 1)−1 + 1
dsupp(a⊕a′)=0
csupp(b⊕b′)=0

s−16

=
∑

w,w′
1dsupp(a⊕a′)=w1csupp(b⊕b′)=w′

(
1w 6=0

w′ 6=0

s−16(s16 − 1)−1 + 1w=0
w′=0

s−16

)

=
∑

w,w′
(PS× SW)(a,a′),wC?

w,w′(WS× SP)w′,(b,b′) (11.16)

where we let C? be the 54 × 54 matrix indexed by 4-tuple of weights in {0, 1, . . . , 4}
defined by

C?
w,w′ =

(
1w 6=0

w′ 6=0

(s16 − 1)−1 + 1w=0
w′=0

)
4∏

s=1

(
4
w′s

)
(s− 1)w′s

= 1w=0
w′=0

+ 1w 6=0
w′ 6=0

(s16 − 1)−1
4∏

s=1

(
4
w′s

)
(s− 1)w′s .
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Since (11.16) means that we can write

[C?]2 = PS× SW × C? ×WS× SP, (11.17)

we can easily prove the final result which makes it possible to compute the exact ad-
vantage of the best 2-limited adversary against C.

Theorem 11.3 The respective advantages of the best 2-limited non-adaptive adversary
Ana and of the best 2-limited adaptive adversary Aa against r > 1 rounds of C are such
that

AdvAna(C, C?) = AdvAa(C, C?) =
1
2
|||(L×W)r−2 × L− C?|||∞,

where L, W, and C? are three 54 × 54 indexed by 4-tuple of weights in {0, 1, . . . , 4} and
respectively defined by

Lw,w′ =
4∏

s=1

(
4
w′s

)W(ws + w′s)(
8

ws+w′s

) (s− 1)−ws

with W(0) = 1, W(i) = 0 for 1 ≤ i < 5, and

W(i) =
(

8
i

) i∑

j=5

(
i

j

)
(−1)i−j(sj−4 − 1)

for 5 ≤ i ≤ 8,

Ww,w′ =
P[w, w′]∑
w′′ P[w, w′′]

where

P[w, w′] =
∣∣{supports γ such that cγ = w and dγ = w′}∣∣ =

∑
γ

1cγ=w1dγ=w′ ,

and

C?
w,w′ =





1 if w = w′ = 0,
(s16 − 1)−1

∏4
s=1

(
4

w′s

)
(s− 1)w′s if w 6= 0 and w′ 6= 0,

0 otherwise,

for all w, w′ ∈ {0, 1, . . . , 4}4 and where s = 28.

Proof. The equality between the respective advantages of the best non-adaptive and
non-adaptive distinguishers was shown in Lemma 11.1. From (11.15) and (11.17) we
see that

[C]2 − [C?]2 = PS× SW ×
(
(L×W)r−2 × L− C?

)
×WS× SP.

Using lemmas 10.5 and 11.4 successively, we obtain

|||[C]2 − [C?]2|||∞ = |||(L×W)r−2 × L− C?|||∞.
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r 1 2 3 4 5 6
Adv(C, C?) 1 1 2−4.0 2−23.4 2−45.8 2−71.0

r 7 8 9 10 11 12
Adv(C, C?) 2−126.3 2−141.3 2−163.1 2−185.5 2−210.8 2−238.9

Table 11.1: Exact values of the advantage of the best 2-limited (non-)adaptive distin-
guisher for several number of rounds r.

Theorem 10.1 allows to conclude.

Results of our practical computations are reported in Table 11.1. These exper-
iments where programmed in C using the GNU Multiple Precision arithmetic library
(GMP) [55] and the MPFR library [115] for multiprecision floating-point computations.
All the intermediate computations where done using rational numbers instead of floating
point numbers to keep maximum precision.

Security Result 11.1 Seven rounds of C are enough to obtain provable security against
2-limited (non-)adaptive adversaries.

11.3 Consequences for Iterated Attacks of Order 1, Linear

and Differential Cryptanalysis

According to Corollary 10.1 and to the results obtained in Table 11.1, 7 rounds
of C are enough to ensure provable security against any iterated attack of order 1, pro-
vided that the number of queries q is negligible compared to 264. In the particular case
of linear cryptanalysis, the discussion following (10.1) allows to deduce from Table 11.1
that 7 rounds are enough resist linear cryptanalysis (whatever the number of queries
granted to the adversary). Equation (10.2) leads to the same conclusion for differen-
tial cryptanalysis. In the following section we will derive exact results concerning both
linear and differential cryptanalysis instead of upper-bounds.

Security Result 11.2 Seven rounds of C are enough to obtain provable security against
iterated attacks of order 1.
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11.4 Exact Security against Linear and Differential Crypt-

analysis

Security against Linear Cryptanalysis

From Heuristic 8.2, we know that the data complexity of the best linear dis-
tinguisher between C and the perfect cipher C? is close to

8 ln 2
maxa,b6=0 ELPa,b(C)

where (according to Definition 8.6)

ELPa,b(C) = EK (LPa,b(CK)) with LPa,b(Ck) = (2PrP [a • P = b • Ck(P )]− 1)2 ,

the random variable P ∈ {0, 1}n being uniformly distributed and Ck denoting the
permutation obtained using the extended key k. As in sections 11.2 and 11.3, we
assume that the round keys are independent.

The results obtained so far allow us to easily conclude that any linear dis-
tinguisher will eventually fail to distinguish C from the perfect cipher as soon as the
best 2-limited distinguisher has a negligible advantage. Indeed, we note that the linear
probability can also be expressed as

ELPa,b(Ck) = 1− 2 · EK

(
EP,P ′

(
A(P, CK)⊕A(P ′, CK)

))

where
A(P, Ck) = 1a•P⊕b•Ck(P ),

from which we clearly see that a linear distinguisher can be expressed as a 2-limited
distinguisher (and thus has an advantage bounded by that of the best 2-limited distin-
guisher, which is negligible for 7 rounds and more). In the rest of this section, we use
another approach to actually compute the expected linear probability.

The exact value of ELPa,b(C) can be expressed as a function of the ELP’s of
the individual rounds by means of Nyberg’s hull principle (see Theorem 8.2) since C is
a Markov cipher [97]:

ELPa,b (C) =
∑

c1,...,cr−1

r∏

i=1

ELPci−1,ci

(
R(i)

)
, (11.18)

where c0 = a and cr = b. In general, the complexity of computing the expected linear
probability by means of the previous formula is prohibitive since, once input/output
masks are given, one has to sum over all possible intermediate masks in order to take
into account every possible characteristic. We will see that this is not the case for C.

Lemma 11.5 Let s = 2m. Let a, b ∈ GF(s)\{0} be two non-zero input/output masks on
the uniformly distributed random substitution box S and let σ = s− 1. The average LP
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value over all possible random S-boxes is independent of a and b, and is ES(LPS(a, b)) =
σ−1.

Proof. Similarly to the proof of Lemma 14 in [155], we note that

ES(LPS(a, b)) = 2−2m
∑

x1,x2
y1,y2

(−1)(x1⊕x2)•a⊕(y1⊕y2)•bPr[(x1, x2)
S−→ (y1, y2)].

Since S is uniformly distributed we have

Pr[(x1, x2)
S−→ (y1, y2)] =





2−m when x1 = x2 and y1 = y2,
2−m(2m − 1)−1 when x1 6= x2 and y1 6= y2,
0 otherwise,

which easily leads to the announced result.

We note that for any S-box S we have LPa,0(S) = LP0,b(S) = 0 (for non-zero
a and b) and LP0,0(S) = 1. From this and the Piling-up lemma, we derive the expected
linear probability over the substitution layer S of C.

Lemma 11.6 Let s = 28 and σ = s− 1. Let a and b be two non-zero masks in GF(s)16,
and let α and β be their respective supports. We have

ELPa,b(S) =

{
σ−w(α) if α = β,
0 otherwise,

where the mean is taken over all possible uniformly distributed and independent random
substitution boxes.

From the previous lemma, it is easy to derive the expected linear probability
over one full round of C.

Lemma 11.7 Let s = 28 and σ = s− 1. Let a and b be two non-zero masks in GF(s)16

of support α and β respectively. The expected linear probability over one full round R(i)

of C, for 1 ≤ i < r, with input (resp. output) mask a (resp. b) is given by

ELPa,b(R(i)) =

{
σ−w(α) if α = supp(LT × b),
0 otherwise.

Similarly, the expected linear probability over the last round is given by

ELPa,b(R(r)) =

{
σ−w(α) if α = β,
0 otherwise.
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Proof. Since L is linear, then for all x we have b • (L×x) = (LT ×b) •x. For intermediate
rounds we thus have

ELPa,b(R(i)) = ELPa,b(L ◦ S(i)) = ELPa,LT×b(S
(i)).

Lemma 11.6 then allows to conclude.

Theorem 11.4 Let s = 28 and σ = s − 1. Let a and b be two masks in GF(s)16 of
support α and β respectively. The expected linear probability over r > 1 rounds of C,
when a is the input mask and b the output mask is

ELPa,b(C) = σ−w(β) ×
(
L

r−1
)

α,β
,

where L is the 216 × 216 square matrix, indexed by supports, and defined by

Lα,β = σ−w(α)N[α, β],

where N[α, β] denotes the number of ways of connecting a support α to a support β
through L, i.e.,

N[α, β] = |{supports a such that supp(a) = α and supp(L× a) = β}| .

Proof. Starting from (11.18), replacing the round’s expected linear probabilities by the
expression given in Lemma 11.7 and inserting an artificial sum over supports we obtain

ELPa,b (C) =
∑

c1,...,cr−1
γ1,...,γr−1

σ−w(γr)1γr−1=γr

r−1∏

i=1

1γi=supp(ci)σ
−w(γi−1)1γi−1=supp(LT×ci)

where c0 = a, cr = b, γ0 = supp(c0), and γr = supp(cr). The previous equality leads to

ELPa,b (C) =
∑

γ1,...,γr−1

σ−w(γr)1γr−1=γr

r−1∏

i=1

σ−w(γi−1)
∑
ci

1γi=supp(ci)1γi−1=supp(LT×ci).

We now note that the transpose and the inverse of a linear multipermutation still are
multipermutations. Furthermore, N[·, ·] only depends on the fact that the underlying
linear transformation is a linear multipermutation (which is clear from (11.9)). Conse-
quently, the sum over ci can be expressed as

∑
ci

1γi=supp(ci)1γi−1=supp(LT×ci) =
∑

c′i

1γi=supp((LT )−1×c′i)
1γi−1=supp(c′i) = N[γi−1, γi].
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The expected linear probability of C now reads

ELPa,b (C) =
∑

γ1,...,γr−1

σ−w(γr)1γr−1=γr

r−1∏

i=1

σ−w(γi−1)N[γi−1, γi]

=
∑

γ1,...,γr−1

σ−w(γr)1γr−1=γr

r−1∏

i=1

Lγi−1,γi

= σ−w(γr)
∑

γ1,...,γr−2

r−1∏

i=1

Lγi−1,γi

where γr−1 = γr. The definition of the product of square matrices concludes the proof.

Based on the results we obtained in Section 11.2, it is now easy to derive an
expression which makes it possible to compute the exact value of the expected linear
probability of C for various number of rounds.

Theorem 11.5 Let s = 28 and σ = s− 1. The maximum expected linear probability of
r > 1 rounds of C over non-zero masks verifies

max
a,b6=0

ELPa,b(C) = max
w′ 6=0

U
(r)
w′

(
4∏

s=1

(
4
w′s

)−1

σ−w′s

)

where the max is taken over 4-tuple of weights in {0, 1, . . . , 4}, where

U
(r)
w′ = max

w 6=0

(
(L×W)r−2 × L

)
w,w′

,

the matrices L and W being two 54 × 54 matrices defined in Theorem 11.3.

Proof. Let α and β respectively denote the supports of a and b. From Theorem 11.4
and (11.14) we have

ELPa,b(C) = σ−w(β)
(
(SW × L×WS)r−1

)
α,β

= σ−w(β)
(
SW × (L×W)r−2 × L︸ ︷︷ ︸

M(r)

×WS
)

α,β
.

From the definitions of SW and WS, it is easy to show that

(SW ×M(r) ×WS)α,β = Mdα,cβ

(
4∏

s=1

(
4
cβ
s

)−1
)

,
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r 2 3 4 5
max ELP 2−31.9774 2−55.9605 2−127.9096 2−127.9096

r 6 7 8 9
maxELP 2−127.9999 2−127.9999 2−128.0 2−128.0

Table 11.2: maxa,b6=0 ELPa,b(C) for various number of rounds r.

so that

max
a,b6=0

ELPa,b(C) = max
α,β 6=0

σ−w(β)M
(r)

dα,cβ

(
4∏

s=1

(
4
cβ
s

)−1
)

= max
w,w′ 6=0

M
(r)
w,w′

(
4∏

s=1

(
4
w′s

)−1

σ−w′s

)

= max
w′ 6=0

U
(r)
w′

(
4∏

s=1

(
4
w′s

)−1

σ−w′s

)
.

Results of our practical computations are reported in Table 11.2. These exper-
iments where programmed in C using the GNU Multiple Precision arithmetic library
(GMP) [55] and the MPFR library [115] for multiprecision floating-point computations.
All the intermediate computations where done using rational numbers instead of floating
point numbers to keep maximum precision.

Security Result 11.3 Four rounds of C are enough to obtain provable security against
linear cryptanalysis.

Security against Differential Cryptanalysis

Just as the efficiency of linear cryptanalysis can be measured by means of
ELP’s, the efficiency of differential cryptanalysis can be measured by means of EDP’s
[124], as discussed on page 148. The computations that we performed on the ELP of C

can be applied, with almost no modification, in order to compute the EDP. The major
modification is that we do not use the fact that b •(M×x) = (MT ×b) •x but rather that
if the difference between two inputs of a linear transformation M is equal to a, then the
output difference is equal to M× a.

We now follow the steps that lead to the final result on the ELP coefficient
and see whether they apply to the EDP coefficient. Lemma 11.5 applies to the EDP
coefficient, and therefore, it is also the case for Lemma 11.6 (where we use the inde-
pendence of the 16 inputs on the S-boxes in order to obtain a product of EDP, instead
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of the Piling-up Lemma). Because the relation between an input difference on the lin-
ear transformation of C and its output difference is not the same as in the case where
we considered input/output masks, we must replace L by (LT )−1 in the definition of
N[·, ·]. Yet, as already noted in the proof of Theorem 11.4, the actual values of N[·, ·]
do not depend on which underlying multipermutation is used, it just needs to be one.
In other words, replacing L by (LT )−1 in the definition of N[·, ·] does not change its
entries. The computations on the ELP coefficient thus still apply for the EDP coeffi-
cient. Lemma 11.7, Theorem 11.4, and Theorem 11.5 apply to the EDP, and thus, the
numerical results given in Table 11.2 are also valid for the value of maxa,b6=0 EDPa,b(C).

Security Result 11.4 Four rounds of C are enough to obtain provable security against
differential cryptanalysis.

11.5 Towards the Perfect Cipher

From the results obtained in the previous section, it is possible to prove a
conjecture made by Keliher, Meijer, and Tavares in [82], namely that all ELP’s converge
towards 1/(2128−1) (which corresponds to the ELP of the perfect cipher) as the number
of rounds increases. This means that C behaves exactly like the perfect cipher (as far
as linear cryptanalysis is concerned) when the number of rounds is high enough.

Clearly, for any non-zero mask c, LPc,0(C) = LP0,x(C) = 0 and LP0,0(C) = 1.
Thus, the 216 × 216 square matrix L of Theorem 11.4 has the following shape

L =
(

1 0
0 M

)
(11.19)

where M is a (216− 1)× (216− 1) square matrix, indexed by non-zero supports. We can
now notice from Theorem 11.4 that

ELPa,b(C) = σ−w(β)Mα,β

for any non-zero a and b of supports α and β respectively. Since
∑

b ELPa,b(C) = 1 we
have

1 =
∑

b

σ−w(β)Mα,β =
∑

β

σw(β)σ−w(β)Mα,β =
∑

β

Mα,β.

We also note that Mα,β ≥ 0 for any α and β.

Lemma 11.8 The matrix M defined by (11.19) is the transition matrix of a Markov
chain, whose set of states is the set of non-zero supports and whose transition probability
from a non-zero support α to a non-zero support β is given by Mα,β.

The transition graph of the Markov chain is the directed graph whose vertices
are the σ non-zero supports and such that there is an edge from α to β when Mα,β > 0.
From the study of supports propagation [41] (which is based on the MDS criterion),
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it clearly appears that from any graph state, there is a path towards the graph state
corresponding to the full support suppfull (for example, two steps are required to go
from a support of Hamming weight 1 to suppfull). Moreover, from the graph state
corresponding to suppfull one can reach any graph state. Hence, from each graph state
there is a sequence of arrows leading to any other graph state. This means that the
corresponding Markov chain is irreducible [61]. Since there is an arrow from suppfull to
itself, one can find a sequence of arrows leading from any graph state to any graph state,
of any (yet long enough) length. This means the Markov chain is aperiodic. We can
deduce that there exists exactly one stationary distribution (see for example chapter
5 in [61]), i.e., a 1 × (216 − 1) row vector π = (πα)α6=0 indexed by non-zero supports
such that πα ≥ 0 for all non-zero α with

∑
α 6=0 πα = 1, and such that πM = π (which

is to say that πβ =
∑

α 6=0 παMα,β for all non zero β). It is easy to show that the row
vector π indexed by non-zero supports such that πα = σw(α)(s16 − 1)−1 is a stationary
distribution of the Markov chain described by the transition matrix M. Indeed,

∑

α 6=0

πα =
1

s16 − 1

∑

α 6=0

(
16∑

s=1

1s=w(α)

)
σw(α) =

1
s16 − 1

16∑

s=1

(
16
s

)
σs = 1,

and therefore π is a probability distribution. Moreover, for any non-zero β,

(πM)β =
1

s16 − 1

∑

α 6=0

N[α, β] =
1

s16 − 1
σw(β) = πβ,

as the sum is simply the number of non-zero states that can be connected to some
non-zero support β through L, which is exactly the number of states of support equal
to β, as each state of support β has one and only one preimage through L.

It is well known [60] that (Mr)α,β → πβ when r →∞. As

ELPa,b(C) = σ−w(β)(Mr−1)α,β

for non-zero masks a and b of respective supports α and β, we have proved the following
theorem (which corresponds to the conjecture in [82]).

Theorem 11.6 Let s = 28. Let a and b be two non-zero masks in GF(s)16. Then

lim
r→∞ELPa,b(C[r]) = ELPa,b(C?) =

1
s16 − 1

, (11.20)

where C? denote the perfect cipher on GF(s)16.

11.6 Provable Security against Impossible Differentials

Impossible Differentials [18] attacks are a variation of differential cryptanalysis.
They consist in finding pairs of input/output differences such that for any instance c of
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C we have DPa,b(c) = 0. In other words, an input difference of a can never (i.e., for any
input and any key) lead to an output difference of b. In the case of C we can prove that
five rounds are enough to have no impossible differential5, i.e., given any input/output
masks a and b, there exists an instance c of C[5] (i.e., a key defining 80 permutations)
such that DPa,b(c) 6= 0.

Lemma 11.9 Let a, b ∈ {0, 1}128 be any two differences of full support. One substitution
layer S is enough to ensure that there exists an instance s of S such that DPa,b(s) 6= 0.

Proof. Considering the two plaintexts 0 and a, we can choose the 16 substitution boxes
s0, . . . , s15 of one round such that si(0) = 0 and si(ai) = bi (where a = (a0, a1, . . . , a15)
and b = (b0, b1, . . . , b15)). As both ai and bi are non-zero (a and b are of full support),
both conditions can be verified without being inconsistent with the fact that si is a
permutation.

Lemma 11.10 Let a ∈ {0, 1}128 be a non-zero difference of arbitrary support. Consid-
ering a two full rounds version of C (i.e., C = R(2) ◦ R(1) = L(2) ◦ S(2) ◦ L(1) ◦ S(1)),
there exists a difference b ∈ {0, 1}128 of full support and an instance c of C such that
DPa,b(c) 6= 0.

Proof. For simplicity reasons, we restrict ourselves to the case where the support of a is
of weight 1 (the other cases can be treated in a similar way). Without loss of generality,
assume a0 6= 0 while ai = 0 for i = 1, . . . , 15. We consider the two plaintexts to be 0
and a. Letting S

(1)
i (0) = 0 for all i, we have L(1) ◦ S(1)(0) = 0. By carefully choosing

S
(1)
0 (a0), we can make sure that L(1) ◦ S(1)(a) has a support of weight 4 (on the first

columns of the four by four array). Proceeding in the same manner in the second round,
we can make sure that C(0) = 0 and b = C(a) is of full support.

Consider any two differences a, b ∈ {0, 1}128 and a five round version of C =
S(5) ◦ L(4) ◦ S(4) ◦ L(3) ◦ S(3) ◦ L(2) ◦ S(2) ◦ L(1) ◦ S(1). From Lemma 11.10, there exists
an instance cstart of the first two rounds L(2) ◦ S(2) ◦ L(1) ◦ S(1) and a difference d of full
support such that

DPa,d(cstart) 6= 0.

Starting from the end, there exists an instance cend of S(5) ◦ L(4) ◦ S(4) ◦ L(3) and a
difference e of full support such that

DPb,e(c−1
end) 6= 0, so that DPe,b(cend) 6= 0.

From Lemma 11.9, there exists an instance cmid of S(3) such that

DPd,e(cmid) 6= 0.

Consequently,
DPa,b(cend ◦ cmid ◦ cstart) 6= 0.

5There exists an impossible differential on 4 rounds of the AES leading to an attack on 6 rounds [33].
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Security Result 11.5 Five rounds of C are enough to ensure that no impossible differ-
ential exists.

11.7 Taking the Key-Schedule into Account

We assumed in sections 11.2 to 11.6 that the random substitution boxes were
independent and uniformly distributed. When choosing these boxes by means of the
key-schedule algorithm described in Section 11.1 this assumption does not hold anymore.
Yet, we will show that under a certain intractability assumption, the keyed C is not less
secure than the version of C studied in the previous sections.

All Substitution Boxes of C are Indistinguishable from Indepen-
dent Perfectly Random Permutations

A pseudo-random bit generator (PRBG) is said to be cryptographically secure if
no polynomial-time statistical test can distinguish an output sequence of this generator
from a uniformly distributed random bit string of the same length with a significant
advantage [166]. Such a generator can always be distinguished if the length of the bit
string is longer than the generator’s period. We need to prove that the Blum-Blum-
Shub generator (BBS) we use has a period long enough to generate a complete extended
key.

We know from the original paper [29] that the period of the xi’s sequence
of the BBS generator divides λ(λ(n)) (where λ denotes the Carmichael function) if
both p and q are strong-primes and both p and q are Blum integers. Obviously, the
period of the bit string output by BBS divides the period of the xi’s. By making
sure that λ(λ(n)) does not contain small factors, we can prove that this length will be
large enough. This can be done by choosing strong-strong-primes p and q. In such
a case we can write p = 2p1 + 1 = 4p2 + 3 and q = 2q1 + 1 = 4q2 + 3, and obtain
λ(λ(n)) = λ(lcm(2 p1, 2 q1)) = λ(2 p1 q1) = lcm(2 p2, 2 q2) = 2 p2 q2. Therefore, if the
period of the bit string is not 2, it is necessarily long enough to generate a complete
extended key as min(p2, q2)À 300 000.

It is known that the original Blum-Blum-Shub pseudo-random bit generator
is cryptographically secure [29,30]. Vazirani and Vazirani showed that outputting both
the least and most significant bits of the quadratic residues produced by the generator
is also cryptographically secure [158,159].

Definition 11.3 Let s0 and s1 be two bit strings, such that s0 is obtained using the BBS
pseudo-random generator and s1 is perfectly random. The advantage of an adversary
A trying to distinguish s0 from s1 is given by

AdvBBS
A = Pr

[
Adv(s0) = 0

]− Pr
[
Adv(s1) = 0

]
.
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Assuming that the problem of deciding the quadratic residuosity modulo n
is hard (an assumption we will refer to as the quadratic residuosity assumption [56]),
we know that AdvBBS

A can be made arbitrarily small by increasing the value of n.
The key schedule of C relies on the BBS generator and makes sure that the mapping
from the set of 2128 keys to the set of possible seeds of the pseudo-random generator
is injective. Therefore, the pseudo-random sequence produced by the key schedule of
C is indistinguishable from a perfectly random binary sequence of the same length.
The method we use to convert this binary sequence into substitution boxes makes sure
that for an unbiased sequence one obtains an unbiased set of substitution boxes. By
choosing a suitable n, the substitution boxes of C can thus be made indistinguishable
from independent perfectly random permutations.

The Keyed C is not Less Secure than C with Independent Boxes

Definition 11.4 Let k0 and k1 be two extended keys of C, such that k0 is obtained
through the key schedule seeded by a perfectly random 128-bit key and k1 is uniformly
distributed. The advantage of an adversary A trying to distinguish k0 from k1 is given
by

Advkey
A = Pr

[
A(k0) = 0

]− Pr
[
A(k1) = 0

]
.

Lemma 11.11 Let k0 and k1 be two extended keys as in Definition 11.4 and s0, s1 be
two bit strings as in Definition 11.3. An adversary A able to distinguish k0 from k1 with
probability p can distinguish s0 from s1 with probability p′ ≥ p, i.e., Advkey

A ≤ AdvBBS
A .

Proof. Given sb (b ∈ {0, 1}), the adversary can derive an acceptable extended key kb.
From this, the adversary has an advantage Advkey

A of guessing the correct value of b and
thus obtains a distinguisher on BBS with advantage Advkey

A .

The strongest notion of security for a block cipher is its indistinguishability
from a perfectly random permutation C?. Proving the security of C against a distin-
guishing attack performed by A consists in upper bounding AdvA(C,C?).

Let k0 and k1 be two random extended keys of C picked as in Definition 11.4,
defining two random instances of C denoted Ckey and Crand respectively. Obviously,
distinguishing Ckey from Crand is harder than distinguishing k0 from k1, so that

AdvA(Ckey, Crand) ≤ Advkey
A .

Assume there exists a distinguishing attack on Ckey that does not work on
Crand such that, for an adversary A using it,

AdvA(Ckey, C
?) ≥ 2 ·AdvA(Crand, C

?).
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From the triangular inequality we have

AdvA(Ckey, C
?)−AdvA(Crand, C

?) ≤ AdvA(Ckey, Crand)

so that

AdvA(Ckey,C
?) ≤ 2 ·AdvA(Ckey,Crand) ≤ 2 ·Advkey

A .

In conclusion, using Lemma 11.11, any distinguishing attack twice as effective
on Ckey than on Crand gives an advantage which is bounded by 2 · AdvBBS

A . Under the
quadratic residuosity assumption, such an attack cannot be efficient.

Although the quadratic residuosity problem is not equivalent to the problem of
factoring p · q, the best known attacks require it. The exact cost of this factorization is
not obvious. For a given symmetric key size, there are several estimates for an equivalent
asymmetric key size [84]. According to the NIST recommendations, a 2048-bit modulus
is equivalent to a 112-bit symmetric key [53].

Security Result 11.6 Under the quadratic residuosity assumption, C used with the key
schedule described in Section 11.1 is as secure as C used with independent perfectly
random substitution boxes.

The Keyed C has no Equivalent Keys

Two block cipher keys are said to be equivalent when they define the same
permutation. It is easy to build equivalent extended keys for C (when not using the
key schedule). Consider an extended key k1 defining a set of 160 substitution boxes
such that the first 32 are the identity. We consider a second extended key k2 defining
another set of substitution boxes such that the last 128 are identical to that defined by
k1 and such that the first 16 boxes simply xor a constant a ∈ {0, 1}128 to the plaintext,
the remaining boxes (in the second layer) correcting the influence of a by xoring L(a)
to its input. Although they are different, k1 and k2 define the same permutation. Such
a property could be a threat to the security of C. If too many such extended keys were
equivalent, it could be possible to find equivalent 128-bit keys for Ckey.

We can prove that the probability that two 128-bit equivalent keys exist is neg-
ligible. Indeed, this probability depends on the number of equivalence classes among
the extended keys. Considering a one round version of C, it can be seen that no equiv-
alent extended keys exist. Consequently, there are at least (28!)16 ≈ 226944 equivalence
classes. Adding rounds (thus increasing the extended key size) cannot decrease this
number of classes. Assuming that the key schedule based on BBS uniformly distributes
the extended keys obtained from the 128-bit keys among these classes, the probability
that two keys fall into the same class can be upper bounded by

1− e−(2128)2/(2∗226944) ≈ 2−26689.
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Security Result 11.7 The probability that two 128-bit keys lead to the same instance
of C is upper bounded by 2−26689.

11.8 Unproved Security against other Attacks

C is (not that) Resistant to Saturation Attacks

Saturation attacks [69, 93] are chosen-plaintext attacks on byte-oriented ci-
phers. An attack on four rounds of the AES can be performed [42] by choosing a set of
28 plaintexts equal on all but one byte. After 3 rounds of the AES, the xor of all the
corresponding ciphertexts is 0. This makes it easy to guess the key of the fourth round,
as all round key bytes can be guessed independently.

In our case, the property on the third round output still holds. Nevertheless,
it only allows to exclude 255 out of 256 keys for each substitution box. This was enough
for the AES, but in our case an adversary would still be left with 255! valid substitution
boxes, so that a more subtle approach is needed.

In [26], Biryukov and Shamir present an attack on SASAS, a generic construc-
tion with three rounds of random key-dependent substitution boxes linked by random
key-dependent affine layers. Following their approach, the saturation attacks on the
AES can be adapted to C but with a non-negligible cost. In this approach, an exhaus-
tive search on 8 bits (as necessary with the AES) is replaced by a linear algebra step
which requires 224 operations. The additional workload is thus of the order of 216. This
overhead implies that any attack with a complexity higher than 2112 becomes infeasible.
In particular the saturation attacks on 7 rounds of the AES [51] should not apply to C.

We believe that saturation-like attacks are the biggest threat for reduced
rounds versions of C. Chances that such attacks apply to 10 rounds are however very
low.

C is Resistant to a Wide Variety of Attacks

Algebraic attacks consist in rewriting the whole block cipher as a system of
algebraic equations. The solutions of this system correspond to valid plaintext, cipher-
text, and key triples. Algebraic attack attempts on the AES take advantage of the
simple algebraic structure of the substitution box [36]. In our case, substitution boxes
can by no means be described by simple algebraic forms, and thus, algebraic attacks
will necessarily be much more complex against C than against the AES. We do believe
that they will be more expensive than exhaustive key search.

Slide attacks [27] exploit a correlation between the different round keys of a
cipher. These attacks apply for example against ciphers with weak key schedules or
against block ciphers with key-dependent substitution boxes and periodic key sched-
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ules. C uses independent perfectly random substitution boxes, so that all rounds are
independent from each other. Slide attacks cannot apply here.

The boomerang attack [162] is a special type of differential cryptanalysis. It
needs to find a differential characteristic on half the rounds of the cipher. Four rounds
of C being sufficient to be provably secure against differential cryptanalysis, 10 rounds
are necessarily sufficient to resist the boomerang attack. Similarly, neither differential-
linear cryptanalysis [20,99] nor the rectangle attack [19] apply to C.

11.9 A Fast Variant of C without Security Compromise

The main drawback in the design of C is the huge amount of pseudo-random
bits required for the key schedule. Having to generate hundreds of thousands of bits
with the Blum-Blum-Shub generator is unacceptable for many applications. We propose
here an adaptation of C, enjoying the same security proofs, but requiring much less
pseudo-random bits.

Using Order 2 Decorrelated Substitutions Boxes. One can note that the security
results obtained in sections 11.2, 11.3, 11.4, 11.5, and 11.7 do not require from the
substitution boxes to be perfectly random permutations. In reality, one only needs to
have order 2 decorrelated substitution boxes.

Suppose we have a family D2 of order 2 decorrelated substitution boxes. Using
the Blum-Blum-Shub generator and the same method as for the standard C key sched-
ule, we can generate a set of 160 substitution boxes from D2 indistinguishable from 160
randomly chosen D2 boxes. Again, it is possible to prove that any attack on a keyed
C using substitution boxes in D2 requires to be able to distinguish the output of the
Blum-Blum-Shub generator from a perfectly random binary stream.

Hence, apart from the resistance to impossible differentials, all proved security
arguments of C remain untouched when using boxes of D2. However, each time the key
schedule required log2 256! bits from the Blum-Blum-Shub generator, it only requires
log2 |D2| now.

A ⊕ B
X

: a Good Family of Order 2 Decorrelated Substitution Boxes. From
what we have just seen, whatever the family D2 we use, most of the security results will
still hold. For optimal efficiency, we need to select the smallest possible such family. It
was shown in [4] that any family of the form

D2 =
{
X 7→ A⊕B · S(X) : A,B ∈ {0, 1}8, B 6= 0

}

where S is any fixed permutation of GF(28) (and where · represents a product in GF(28))
is decorrelated at order 2. We propose to use the family

D2 =
{

X 7→ A⊕ B

X
: A,B ∈ {0, 1}8, B 6= 0

}
.

This family contains 216 elements and the substitution boxes can be chosen uniformly
in D2 from 16 bits of the Blum-Blum-Shub generator. The first 8 bits define A, the last
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8 define B. So, the whole key schedule for ten rounds of C only requires 2 560 pseudo-
random bits and should be about 100 times faster than an unmodified C with perfectly
random permutations. One may believe that this construction is very similar to that
of the AES (assuming that the round keys are independent and perfectly random).
Nevertheless, deriving the AES construction from ours requires to set B = 1. The
family obtained in this case is no longer decorrelated at order 2, so that, unfortunately,
none of the security results we obtained for C directly applies to the AES.

Security Considerations. Even if this might not be the case for any order 2 decor-
related family of substitution boxes, it is interesting to note that C built on the family
D2 we chose is also resistant to impossible differentials. As for perfectly random per-
mutations, lemmas 11.9 and 11.10 can both be proved for boxes of the form A⊕ B

X .
None of the security results we obtained requires using perfectly random per-

mutations and substitution boxes of the form A ⊕ B
X are enough. We believe that

achieving the same security level with perfectly random permutations is possible with
fewer rounds. More precisely, it may be possible to obtain a trade-off between the
number of rounds and the level of decorrelation of the random substitution boxes.
Fewer rounds lead to fast encryption/decryption procedures but require a higher level
of decorrelation. In this case, more pseudo-random bits are necessary to generate each
substitution box, and this may lead to a (very) slow key schedule. The best choice
depends on the application.

11.10 Implementation and Performances

Implementation. As seen in Section 11.1, before being able to use the Blum-Blum-
Shub generator, one needs to generate two strong-strong-primes p and q, which is not
an easy operation: it has a complexity of O((log p)6). For primes of length 1024, this
takes one million times more operations than generating a prime of the same size. Some
optimizations exist to improve the constant factor in the prime number generation [71]
and can become very useful for strong-strong-prime numbers.

When implementing C, the same optimizations as for the AES are possible. In
particular, one round of C can be turned into 16 table look-ups and 12 xors. Basically,
the output can be split in four 32-bit blocks, each of which only depends on four bytes
of the input. However, all the tables of C are different from each other. This is the
only reason why encrypting/decrypting with C could be slower than with the AES.
Considering standard 32-bit computers, this has little influence in practice as the 160
tables still fit in the cache of the CPU. The required memory is 160·256 ·4 = 160kBytes.
This however becomes an issue when implementing C on a smartcard (but who wants
to implement Blum-Blum-Shub on a smartcard anyway?) or on a CPU with 128kBytes
of cache.

We programmed C in C using GMP [55] for the key schedule operations. On
a 3.0 GHz Pentium D, we obtain encryption/decryption speeds of 500 Mbits/s. Gen-
erating the 160 substitution boxes from the 128-bit secret key takes 2.5s when using
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perfectly random permutations and 25ms when using the A⊕ B
X construction. Note that

to decrypt, it is also necessary to invert the substitution boxes. This takes a negligible
time compared to the generation of the extended key, which is the most expensive step
of the key schedule.

Applications. Given the timings we obtained, it appears that using C for encryption
purpose is practical, in particular with the shortened key schedule. Of course, a key
schedule of 25ms is much slower than most existing key schedules but is still acceptable
in a large majority of applications. This can become negligible when the amount of
data to encrypt becomes large.

The 2.5s obtained for the “most secure” version using perfectly random sub-
stitution boxes is suitable for only a few very specific applications. However, we believe
that in the case where a very high security level is required, this price is not that high.
This might not be an issue in certain cases when the key schedule is run in parallel
with some other slow operation, like for hard disk drive encryption (for which the key
schedule is performed only once during a boot sequence which already takes several
seconds).

In some other circumstances however, C is not usable at all. For example,
when using it as a compression function in a Merkle-Damg̊ard construction, as one key
schedule has to be performed for each block (hashing a 1 MByte message would take
more than one day).

Further Improvements. It is known that outputting α(n) = O(log log n) bits at each
iteration of the Blum-Blum-Shub generator is cryptographically secure [159]. However,
for a modulus n of given bit length, no explicit range for α(n) was ever given in the
literature [114]. Finding such a constant could considerably improve the speed of the
key schedule of C.

Another possible improvement to the key schedule would be to rely on some
other cryptographically secure pseudo-random generator. The pseudo-random genera-
tor on which the stream cipher QUAD [13, 14] is based may be a good candidate: it
offers provable security results and achieves speeds up to 5.7Mbits/s. Using such a
construction would certainly improve the key schedule time by an important factor,
so that the “most secure” version of C might compare to the current version using
derandomized substitution boxes.

C vs. the Vernam Cipher. Since we need to assume the independence of the round
key bits in our security proof, we have to use a cryptographically secure pseudo-random
bit generator to fill the gap between theory and practice. Yet, in the best case, we need
to generate approximately 3 000 key bits, which is more than the 2 ·128 = 256 bits that
can be encrypted in a provably secure way. Obviously, one can wonder why not use
the Vernam cipher in that case. We note that once the security of the Vernam cipher
starts to decrease, it does exponentially. In contrast, it is not clear that 24 queries
(that corresponds to more than 3 000 bits) could allow one to distinguish C from C?.
Furthermore, even in the case where C is used with a fast key schedule that provides no
security guarantee, it is still true in general that an attack that would hold on C with
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this key schedule but not on C with perfectly random key bits could easily be avoided
by simply choosing a stronger key schedule.

11.11 Summary

We have introduced C, a block cipher provably secure against a wide range of
attacks. It is as fast as the AES for encryption on a standard workstation. Provable se-
curity requires a cryptographically secure key schedule. Consequently, the key schedule
of C is too slow for some applications.

As far as we know, C is the first practical block cipher to provide tight security
proofs that do take into account the key schedule. It is proved that C resists:

• 2-limited adaptive distinguishers,

• linear cryptanalysis (taking into account the possible cumulative effects of a linear
hull),

• differential cryptanalysis (similarly considering cumulative effects of differentials),

• iterated attacks of order 1

• and impossible differentials.

We also give strong evidence that it also resists: algebraic attacks, slide attacks, the
boomerang attack, the rectangle attack, differential-linear cryptanalysis, and, to some
extent, saturation attacks. From our point of view, the most significant improvement
that could be made on C would be to give a bound on the advantage of the best d-limited
adversary for d > 2.

“Mind you, even I didn’t think of that one... extraordinary.”
Chief Insp. Hubbard
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KFC: the Krazy Feistel Cipher

In the previous chapter, we presented C, a block cipher construction prov-
ably resistant to (among others) linear and differential cryptanalysis (where the linear
hull [125] and differentials [97] effects are taken into account, which is unfortunately
not usual in typical security proofs of block ciphers), several of their variants, 2-limited
distinguishers and thus, all iterated attacks of order 1. Our aim in this chapter, is to
design a block cipher based on the same principles as C but provably secure against
q-limited distinguishers for large values of q. We call this construction KFC as it is based
on a Feistel scheme [50]. KFC is practical in the sense that it can be implemented and
reaches a throughput of a few Mbits/s. This is clearly too low for most applications,
but maybe not for all of them. Our objective here is to give more weight to the security
proofs than to the throughput of the final implementation. Consequently, just as the
typical security proofs of block ciphers do not compare to those that KFC enjoys, the
encryption speed reached by KFC does not compare to those of nowadays block ciphers.

Instead of first describing KFC and then review all features and security results
that we could prove, we use in this chapter a different approach, closer to the time
succession of the questions and issues that we raised (and hopefully solved most of
the time) during our research. In the first section, we give some hints about why we
choose to use a Feistel scheme [50] for KFC. A description of the structure of the
random functions we use in the Feistel scheme is then given in Section 12.2 along with
the intuitive reason why we choose this one in particular. The exact advantage of the
best 2-limited distinguisher is computed in Section 12.3, and in Section 12.4, we show
how to bound the advantage of higher order adversaries. Sections 12.5 and 12.6 give
implementations results and conclude this chapter.

Throughout this chapter, a perfectly random function denotes a random func-
tion uniformly distributed among all possible functions on the appropriate sets. Conse-
quently, when referring to a random function, nothing is assumed about its distribution.
Also, we will not define any key schedule algorithm for KFC. The reasons are twofold.
First of all, one could easily adapt the key schedule of C to KFC (for reasons that will
be obvious by the end of Section 12.2), except that much more random bits will be
necessary, as we will see. Secondly, we hope that the ideas on which the design of KFC
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relies will lead to new, more effective constructions. We do not expect KFC to be used
as-is, although it could be of course. For this last reason, we assume in the whole chap-
ter that all the random functions (F-boxes) and the random permutations (S-boxes) are
mutually independent.

12.1 From the SPN of C to the Feistel Network of KFC

The block cipher C (introduced in the previous chapter) achieves goals similar
to those we want to achieve with KFC: being resistant to 2-limited adversaries, it is
secure against all iterated attacks of order 1. These results are obtained by exploit-
ing strong symmetries (induced by intrinsic symmetries of the confusion and diffusion
layers) in the order 2 distribution matrix of C. Unfortunately, we are not able to ex-
hibit similar symmetries for higher orders. It appears that layers of perfectly random
permutations are suitable for proving security results at order 2, not above.

Instead of explicitly computing the advantage of a q-limited distinguisher we
will try to bound it by a function of the advantage of the best (q − 1)-limited dis-
tinguisher, and apply this bound recursively down to order 2 (which we know how to
compute). This seems clearly impossible with layers of random permutations as two
distinct inputs will always lead to two correlated outputs. However, this is not the
case anymore when considering a layer of mutually independent and perfectly random
functions. For instance, two distinct inputs of a perfectly random function yield two
independent outputs. Similarly, if the two inputs of a layer of functions are distinct on
each function input, the outputs are independent. This extends well to a set of q texts:
if one text is different from all the others on all function inputs, the corresponding
output is independent from all other outputs. A formal treatment of this idea is given
in Section 12.2.

However, layers of random functions cannot always be inverted and thus do not
fit in a classical SPN structure. The straightforward solution is to use these functions
as the round functions of a Feistel scheme [50]. Moreover, decorrelation results on the
round functions of a Feistel scheme extend well to the whole construction. Indeed,
Theorem 10.5 shows that if we can instantiate independent random functions secure
against all q-limited distinguishers, we can obtain a block cipher provably secure against
any q-limited distinguisher. In the following sections, we focus on building a round
function FKFC following the ideas we have introduced here.

12.2 A Good Round Function for the Feistel Scheme

To analyze the behavior of a layer of random functions, we consider the con-
struction Fsff : {0, 1}n → {0, 1}n defined on binary strings of length n > 0 by

Fsff = S3 ◦ F2 ◦ F1,
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Figure 12.1: Increasing the decorrelation order using a layer made of small independent
and perfectly random functions

where F1 : {0, 1}n → {0, 1}n is a random function, S3 : {0, 1}n → {0, 1}n is a random
permutation, and F2 : {0, 1}n → {0, 1}n is a layer made of small independent and
perfectly random functions on m bits (see Figure 12.1(a)). We therefore assume that
m|n, i.e., there exists ` > 0 such that n = ` ·m. We assume that F1, F2, and S3 are
mutually independent. Let Aq denote the best q-limited (adaptive or non-adaptive)
distinguisher between H0 : F = F? and H1 : F = Fsff in the Luby-Rackoff model (see
Section 10.1), where F? : {0, 1}n → {0, 1}n denotes the uniformly distributed random
function from {0, 1}n to {0, 1}n. We obtain an interesting property, making it possible
to relate AdvAq(H0,H1) to AdvAq−1(H0, H1). We consider a set of q inputs of the
function Fsff and denote the corresponding random outputs of F1 by X(1), . . . , X(q),
where X(k) = (X(k)

1 , . . . , X
(k)
` ) for k = 1, . . . , q. Let e be the event

{
∃k ∈ {1, . . . , q} s.t. ∀j ∈ {1, . . . , `} : X

(k)
j /∈

{
X

(1)
j , . . . , X

(k−1)
j , X

(k+1)
j , . . . , X

(1)
j

}}
,

that is, e is the event that one of the q inputs is different from all the others on the
` blocks. If e occurs, at least one of the outputs of the functions layer is a uniformly
distributed random variable independent from the others. More formally, we have the
following lemma.

Lemma 12.1 With the notation introduced in this section we have, for all permutations
S3,

AdvAq(H0, H1) ≤ AdvAq−1(H0, H1) + Pr[e]. (12.1)
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Proof. We first note that conditioning the expression of the advantage AdvAq(H0, H1)
by the event e leads to

AdvAq(H0, H1)
= |(PrH1 [Aq = 1|e]− PrH0 [Aq = 1|e])Pr[e] + (PrH1 [Aq = 1|e]− PrH0 [Aq = 1|e])Pr[e]|
≤ |PrH1 [Aq = 1|e]− PrH0 [Aq = 1|e]|+ Pr[e].

Without loss of generality, we can assume that the adversary does not make the same
query twice (as this would not increase its advantage) and that the event e is true for
the qth query xq. This means that (F1(xq))j is different from all (F1(xi))j for i < q
and 1 ≤ j ≤ N and thus, (F2 ◦ F1)(xq) is a uniformly distributed random variable
independent of (F2 ◦ F1)(xi) for all i < q. As S3 is a permutation, this property is still
true for (S3 ◦ F2 ◦ F1)(xq) = Fsff(xq). Denoting by Y this random variable we have:

Pr[Fsff(x1) = y1, . . . ,Fsff(xq) = yq|e] = Pr[Fsff(x1) = y1, . . . , Fsff(xq−1) = yq−1, Y = yd]
= 2−nPr[Fsff(x1) = y1, . . . ,Fsff(xq−1) = yq−1].

Let A = |PrH1 [Aq = 1|e]− PrH0 [Aq = 1|e]|. Similarly to the proof of Theorem 10 in [155]
we know that:

A =
1
2

max
x1

∑
y1

· · ·max
xq

∑
yq

∣∣∣Pr[Fsff(x1) = y1, . . . ,Fsff(xq) = yq|e]− 2−d·n
∣∣∣ .

From the two previous equations we obtain that:

A =
1
2

max
x1

∑
y1

· · ·max
xq

∑
yq

2−n
∣∣∣Pr[Fsff(x1) = y1, . . . ,Fsff(xq−1) = yq−1]− 2−(d−1)·n

∣∣∣

=
1
2

max
x1

∑
y1

· · ·max
xq−1

∑
yq−1

∣∣∣Pr[Fsff(x1) = y1, . . . ,Fsff(xq−1) = yq−1]− 2−(d−1)·n
∣∣∣

= AdvAq−1(H0, H1).

Why Lemma 12.1 is not Enough. From the previous inequality, it seems natural to
consider a substitution-permutation-like construction made of an alternation of layers
of independent and perfectly random functions and layers of linear diffusion (as shown
on Figure 12.1(b)). Intuitively, one could think that (as it is the case when iterating
random permutations) iterating random functions is sufficient to decrease the advantage
of a distinguisher. However, this is definitely not the case. Indeed, consider a 2-limited
attack where the two plaintexts are equal on `−1 blocks and different on the last block.
There is a non-negligible probability 2−m that, after the first layer of functions, both
outputs are completely equal, thus leading to a distinguisher with advantage 2−m. For
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practical values of m (e.g., m = 8), this is not acceptable. Intuitively, this means that
we need a good resistance to 2-limited adversaries to initialize the recurrence relation
of equation (12.1).

The Sandwich Technique. As proved in Chapter 11, a substitution-permutation
network (SPN) made of layers of mutually independent and perfectly random permu-
tations and of well chosen linear diffusion is efficient against 2-limited distinguishers.
Intuitively, this means that any set of q inputs will lead to a set of q pairwise indepen-
dent outputs. As we will see in Section 12.4, pairwise independence is exactly what we
need to apply the recursive relation (12.1).

For these reasons the construction we choose for FKFC consists in sandwiching
the construction sketched on Figure 12.1(b) between two SPN using layers of mutually
independent and perfectly random permutations.

Description of FKFC. The round function FKFC : {0, 1}n → {0, 1}n used in the Feistel
scheme defining KFC is based on three different layers:

• a substitution layer S made of ` mutually independent and perfectly random m-bit
permutations (and thus n = ` ·m),

• a function layer F made of ` mutually independent and perfectly random m-bit
functions,

• a linear layer L which is a ` × ` matrix of elements in GF(2m) defining an MDS
code (for optimal diffusion), which requires ` ≤ 2m−1.

Let r1 and r2 be two integers. The round function FKFC of KFC is defined as:

FKFC = FKFC[r1,r2] = S ◦ (L ◦ F(r2) ◦ · · · ◦ L ◦ F(1)) ◦ (L ◦ S(r1) ◦ · · · ◦ L ◦ S(1)),

where the S,S(r1), . . . ,S(1), F(r2), . . . , F(1) are mutually independent.

Description of KFC. The block cipher KFC : {0, 1}2n → {0, 1}2n is a 3 rounds Feistel
scheme where each round function is an independent function corresponding to FKFC.

12.3 Exact Security of FKFC against 2-limited Adversaries

Shrinking [FKFC]2

As all layers of FKFC are mutually independent, then according to Lemma 10.1
the 2-wise distribution matrix [FKFC]2 can be expressed as

[FKFC]2 = [S ◦ (L ◦ F(r2) ◦ · · ·L ◦ F(1)) ◦ (L ◦ S(r1) ◦ · · ·L ◦ S(1))]2

= ([S]2 × [L]2)r1 × ([F]2 × [L]2)r2 × [S]2. (12.2)

Each of these matrices is a 22n × 22n square matrix, which makes direct computations
impossible for practical parameters. In the rest of this section we will exploit symmetries
in order to reduce the computation to a product of (` + 1)× (` + 1) square matrices.
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In the rest of this chapter we considers each element of {0, 1}n as a `-tuple of
elements in {0, 1}m. Similarly to what we had in Section 10.5, the support of a ∈ {0, 1}n
is the binary `-tuple with 1’s at the non-zero positions of a and 0 elsewhere. It is denoted
supp(a). The weight of the support, denoted w(supp(a)) or w(a), is the Hamming
weight of the support. When considering a pair x, x′ ∈ {0, 1}n, the support of the pair
is supp(x⊕ x′).

Distribution matrices at order 2 are indexed by pairs of texts. Using symme-
tries at two levels, we will first shrink them to 2` × 2` matrices indexed by supports of
pairs and then to (` + 1)× (` + 1) matrices indexed by weights.

Since we assume that the random substitution boxes of the S layers are inde-
pendent and uniformly distributed, we note that S exactly corresponds to the S-box
layer studied in Section 10.5. Using the two matrices PS and SP respectively defined in
(10.7) and (10.8), and which verify (according to Lemma 10.3)

SP× PS = Id and PS× SP = [S]2,

we note that (12.2) can be written as

[FKFC]2 = (PS× SP× [L]2)r1 × ([F]2 × [L]2)r2 × [S]2

= PS× L
r1−1 × SP× [L]2 × ([F]2 × [L]2)r2 × PS× SP (12.3)

where
L = SP× [L]2 × PS. (12.4)

Note that L is a 2` × 2` matrix indexed by supports.
Similarly since we assume that the random function boxes of the F layers are

independent and uniformly distributed, we note that F exactly corresponds to the F-box
layer studied in Section 10.5. According to Lemma 10.4 we can then write (12.3) as

[FKFC]2 = PS× L
r1−1 × SP× [L]2 × (PS× F× SP× [L]2)r2 × PS× SP

= PS× L
r1−1 × SP× [L]2 × PS× (F× SP× [L]2 × PS)r2 × SP

= PS× L
r1 × (F× L)r2 × SP (12.5)

where F is a 2` × 2` matrix indexed by supports and defined by

Fγ,γ′ = 1γ′⊆γs−w(γ)(s− 1)w(γ′),

where s = 2m. To simplify (12.5) we will now take advantage of the fact that L is a
linear multipermutation. Starting from the definition of L in (12.4) we have

Lγ,γ′ =
∑

(x,x′)

∑

(y,y′)

SPγ,(x,x′)[L]2(x,x′),(y,y′)PS(y,y′),γ′

= s−`(s− 1)−w(γ)
∑

(x,x′)

1γ=supp(x⊕x′)1γ′=supp(L(x⊕x′))

= (s− 1)−w(γ)
∑

x

1γ=supp(x)1γ′=supp(L(x)).
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The sum in this equation is the number of texts of a given support γ that are mapped
by the MDS linear layer L on a text of support γ′. According to Theorem 11.2, the
number of codewords with given supports can be explicitly computed for any MDS code
and, amazingly, only depends on the weights of the supports γ and γ′. If we let s = 2m

and denote by C the MDS code defined by the linear diffusion of KFC, we obtain that

Lγ,γ′ = (s− 1)−w(γ)WC(w(γ) + w(γ′))(
2`

w(γ)+w(γ′)
) , (12.6)

where WC(i) =
(
2`
i

)∑i
j=`+1

(
i
j

)
(−1)i−j(sj−` − 1) for i > `, WC(0) = 1, and WC(i) = 0

for 0 < i ≤ `. As the previous equation only depends on the weights of γ and γ′, we
naturally define to new transition matrices1 WS and SW from support to weight and
from weight to support respectively:

SWγ,w = 1w(γ)=w and WSw,γ = 1w(γ)=w

(
`

w

)−1

(12.7)

where γ ∈ {0, 1}` and w ∈ {0, 1, . . . , `}. Note that

WS× SW = Id. (12.8)

Lemma 12.2 Let M be 216 × 216 matrix indexed by supports, such that there exists a
54 × 54 matrix M indexed by 4-tuple of weights in {0, . . . , 4} verifying

M = SW ×M×WS

where SW and WS are defined in (12.7). Then

|||M|||∞ = |||M|||∞.

Proof. By definition,

|||M|||∞ = max
γ

∑

γ′

∑

w,w′
1w(γ)=w1w(γ′)=w′Mw,w′

(
`

w′

)−1

= max
γ

∑

w′
Mw(γ),w′

from which we easily conclude.

Starting from the expression we obtained for L in (12.6), and using the two
new transition matrices, it is easy to see that

Lγ,γ′ =
∑

w,w′
1w(γ)=w1w(γ′)=w′(s− 1)−wWC(w + w′)(

2`
w+w′

)

=
∑

w,w′
SWγ,w(s− 1)−wWC(w + w′)(

2`
w+w′

)
(

`

w′

)
WSw′,γ′ .

1Note that even though the notations are the same than the transition matrices used in the previous
chapter, the definition differ.
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Defining the (` + 1)× (` + 1) matrix L by

Lw,w′ = (s− 1)−wWC(w + w′)(
2`

w+w′
)

(
`

w′

)
(12.9)

for all w, w′ ∈ {0, . . . , `}, the previous expression reads

L = SW × L×WS. (12.10)

Noting that using (12.8) we have

L
r1 = (SW × L×WS)r1 = SW × (L×WS× SW︸ ︷︷ ︸

=Id

)r1−1 × L×WS = SW × L
r1 ×WS,

we can deduce from the discussion on L that (12.5) can written as

[FKFC]2 = PS× SW × L
r1 ×WS× (F× SW × L×WS)r2 × SP

= PS× SW × L
r1 × (F× L)r2 ×WS× SP,

where F is the (` + 1)× (` + 1) matrix indexed by weights such that

F = WS× F× SW.

We can obtain a closed formula for F since for all w, w′ ∈ {0, . . . , `} we have

Fw,w′ =
∑

γ,γ′
WSw,γFγ,γ′SWγ′,w′ =

(
`

w

)−1

s−w(s− 1)w′
∑

γ,γ′
1w(γ)=w1w(γ′)=w′1γ′⊆γ

where
∑

γ,γ′
1w(γ)=w1w(γ′)=w′1γ′⊆γ = 1w′≤w

∑
γ

1w(γ)=w

∑

γ′
1w(γ′)=w′1γ′⊆γ = 1w′≤w

(
`

w

)(
w

w′

)
.

We summarize our results in the following theorem.

Theorem 12.1 With the notations used in this section, the 2-wise distribution matrix
[FKFC]2 of the round function FKFC can be written as

[FKFC]2 = PS× SW × L
r1 × (F× L)r2 ×WS× SP, (12.11)

where PS, SP, SW, and SW and the four transition matrices respectively defined in
(10.7), (10.8), and (12.7), and where both F and L are (`+1)× (`+1) matrices indexed
by weights and respectively defined by

Fw,w′ = s−w(s− 1)w′1w′≤w

(
w

w′

)

and

Lw,w′ = (s− 1)−wWC(w + w′)(
2`

w+w′
)

(
`

w′

)

for all w,w′ ∈ {0, . . . , `}, where WC(i) =
(
2`
i

)∑i
j=`+1

(
i
j

)
(−1)i−j(sj−` − 1) for i > `,

WC(0) = 1, and WC(i) = 0 for 0 < i ≤ `.
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Practical Computation of the Best Advantage

The expression we just obtained for [FKFC]2 leads to a simple practical expres-
sion for ‖[FKFC]2 − [F?]2‖a. We first note that

[F?]2(x,x′),(y,y′) = s−`(1x⊕x′ 6=0s
−` + 1x⊕x′=01y⊕y′=0)

= s−`(1w(x⊕x′)6=0s
−` + 1w(x⊕x′)=01w(y⊕y′)=0)

=
∑

γ,γ′
PS(x,x′),γ (1w(γ)6=0s

−` + 1w(γ)=01w(γ′)=0)(s− 1)w(γ′)

︸ ︷︷ ︸
Mγ,γ′

SPγ′,(y,y′)

where Mγ,γ′ further simplifies to

Mγ,γ′ =
∑

w,w′
1w=w(γ)1w′=w(γ′)(1w 6=0s

−` + 1w=01w′=0)(s− 1)w′

=
∑

w,w′
SWγ,w (1w 6=0s

−` + 1w=01w′=0)(s− 1)w′
(

`

w′

)

︸ ︷︷ ︸
Mw,w′

WSw′,γ′ ,

so that
[F?]2 = PS×M× SP = PS× SW ×M×WS× SP. (12.12)

Theorem 12.2 Let r1 and r2 be two positive integers. The respective advantages of the
best 2-limited non-adaptive adversary Ana and of the best 2-limited adaptive adversary
Aa against FKFC = FKFC[r1,r2] = S ◦ (L ◦ F)r2 ◦ (L ◦ S)r1 are

AdvAna(FKFC,F?) = AdvAa(FKFC, F?) =
1
2
|||Lr1 × (F× L)r2 −M|||∞,

where L, F, and M are three (`+1)×(`+1) matrices indexed by weights and respectively
defined for all w, w′ ∈ {0, . . . , `} by

Lw,w′ = (s− 1)−wWC(w + w′)(
2`

w+w′
)

(
`

w′

)
, Fw,w′ = s−w(s− 1)w′1w′≤w

(
w

w′

)
,

and

Mw,w′ = 1w 6=0s
−`(s− 1)w′

(
`

w′

)
+ 1w=01w′=0,

where s = 2m, WC(i) =
(
2`
i

)∑i
j=`+1

(
i
j

)
(−1)i−j(sj−` − 1) for i > `, WC(0) = 1, and

WC(i) = 0 for 0 < i ≤ `.

Proof. According to Theorem 10.1 we known that

Adva(FKFC, F?) =
1
2
‖[FKFC]2− [F?]2‖2 and Advna(FKFC,F?) =

1
2
|||[FKFC]2− [F?]2|||∞.
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` = 8 and s = 28 ` = 8 and s = 216 ` = 16 and s = 28

@
@r1
r2 0 1 10 100 0 1 10 100 0 1 10 100

0 1 2−5 2−8 2−8 1 2−13 2−16 2−16 1 2−4 2−8 2−8

1 2−5 2−50 2−52 2−49 2−13 2−114 2−116 2−113 2−4 2−95 2−104 2−103

2 2−46 2−53 2−52 2−49 2−110 2−117 2−116 2−113 2−87 2−104 2−104 2−103

3 2−62 2−53 2−52 2−49 2−128 2−117 2−116 2−113 2−120 2−104 2−104 2−103

Table 12.1: Advantage of the best 2-limited distinguisher against FKFC.

From the expression (12.11) we obtained for [FKFC]2 in Theorem 12.1 and the expression
of [F?]2 in (12.12) we see that

[FKFC]2 − [F?]2 = PS× SW ×
(
L

r1 × (F× L)r2 −M
)
×WS× SP.

We can easily deduce the announced result from lemmas 10.5 and 12.2.

Explicit values of this advantage for some typical values of `, s, r1 and r2 are
given in Table 12.1 and were computed using Maple [106]. We note that r1 = 3 is
enough (at least for these parameters). Moreover, the advantage increases with the
value of r2. The reason is that the more F layers there is, the higher is the probability
of an internal collision.

12.4 Bounding the Security of FKFC against Adversaries of

Higher Order

Replacing F by F ◦ S

To simplify the proofs, we will replace each F layer of FKFC by F ◦S. Both con-
structions are completely equivalent in the sense that any decorrelation result holding
for the latter also holds for the original construction, as shown in the following lemma.

Lemma 12.3 Let q > 0 be a positive integer. Letting S and F respectively be the
substitution and the function layers of KFC, we have

[F ◦ S]q = [F]q.

Proof. For any x = (x1, . . . , xq), y = (y1, . . . , yq) ∈ {0, 1}nq we have:

[F ◦ S]q(x,y) = Pr[(x1, . . . , xq)
F◦S−−→ (y1, . . . , yq)]

=
∏̀

i=1

Pr[(x1,i, . . . , xq,i)
F?◦C?−−−−→ (y1,i, . . . , yq,i)]
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where F? (resp. C?) denotes the uniformly distributed random function (resp. permu-
tation) from {0, 1}m to {0, 1}m. Consequently, we have

[F ◦ S]q(x,y) =
∏̀

i=1

1
2m!

∑
c

Pr[(c(x1,i), . . . , c(xq,i))
F?−→ (y1,i, . . . , yq,i)]

=
∏̀

i=1

Pr[(x1,i, . . . , xq,i)
F?−→ (y1,i, . . . , yq,i)]

since the probability that (u1, u2, . . . , uq)
F?−→ (v1, v2, . . . , vq) does not depend on the

particular values of the ui’s but on how many distinct values there are in the set, which
is not changed by applying a permutation c. It follows that

[F ◦ S]q(x,y) = Pr[(x1, . . . , xq)
F−→ (y1, . . . , yq)] = [F]q(x,y).

From now on, we study the construction FKFC = FKFC[r1,r2] defined by

FKFC = S ◦ (L ◦ F(r2) ◦ S(r1+r2) ◦ · · · ◦ L ◦ F(1) ◦ S(r1+1)) ◦ (L ◦ S(r1) ◦ · · · ◦ L ◦ S(1)), (12.13)

which is completely equivalent (in terms of security) than the original definition of FKFC.

Assumption 12.1 For r1 > 2, any i ∈ {0, . . . , r2} and any 2-limited distinguisher A2,
we have

AdvA2(FKFC[r1,r2], F
?) ≥ AdvA2(FKFC[r1,i], F

?).

This assumption seems natural from Table 12.1, although it might prove wrong
in the general case (in particular, the threshold for r1 might be different for other values
of ` and s). However, we experimentally verified it for all values of the parameters we
consider in the rest of this chapter.

In practice, when the advantage of the best 2-limited distinguisher against
FKFC is negligible, Assumption 12.1 means that this is also the case before any F layer.
The inputs of any F layer can thus almost be considered as pairwise independent.

Taking Advantage of the Pairwise Independence

For all i ∈ {0, . . . , r2} we denote by

X
(k)
i = (X(k)

i,1 , X
(k)
i,2 , . . . , X

(k)
i,` ) (12.14)

the output of FKFC[r1,i] when the input corresponds to the kth query (so that k =
1, 2, . . . , q). This notation is illustrated on Figure 12.2. Under this notation, we obtain
the following lemma, which is a direct consequence of Lemma 12.1 in Section 12.2.
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Figure 12.2: Illustration of the notation in (12.14) for r1 = 1, r2 = 2, and q = 3

Lemma 12.4 Let r1, r2 > 0 be two positive integers and let FKFC[r1,r2] be as in (12.13).
For all q > 1 and all i ∈ {1, . . . , r2} we have

AdvAq(FKFC[r1,i], F
?) ≤ AdvAq−1(FKFC[r1,i], F

?) + Pr[ei],

where ei is the event that one of the q inputs is different from all others on the ` blocks
at the output of FKFC[r1,i−1], i.e.,

ei =
{
∃k ∈ {1, . . . , q} s.t. ∀j ∈ {1, . . . , `} :

X
(k)
i,j /∈

{
X

(1)
i,j , . . . , X

(k−1)
i,j , X

(k+1)
i,j , . . . , X

(1)
i,j

}}
.

Proof. Let i ∈ {1, . . . , r2}. Applying Lemma 12.1 with e = ei, F1 = FKFC[r1,i−1], F2 = F,
and S3 = S ◦ L allows to conclude.

From the previous lemma, we see that bounding Pr[ei] will allow us to re-
cursively bound AdvAq(FKFC[r1,i], F

?). Before we try to bound Pr[ei], we first prove a
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very simple lemma, which shows that if the advantage of the best 2-limited adversary
against FKFC is negligible, then the probability that two given m-bit outputs (among
the N possible) are equal is close to 2−m.

Lemma 12.5 Let r1, r2 > 0 be two positive integers, let i ∈ {0, . . . , r2} and let FKFC[r1,i]

be as in (12.13). Let
ε = max

0≤i≤r2

BestAdv2(FKFC[r1,i],F
?)

be the maximum advantage over all rounds of the best 2-limited adversary. With the
notations used in (12.14) we have for all k 6= k′, i ∈ {0, . . . , r2}, and j ∈ {1, . . . , N}:

Pr[X(k)
i,j = X

(k′)
i,j ] ≤ 1

2m
+ ε.

Proof. Let A be the 2-limited distinguisher against FKFC[r1,i] which outputs 1 when

X
(k)
i,j = X

(k′)
i,j and 0 otherwise. By assumption, its advantage

AdvA(FKFC[r1,i], F
?) =

∣∣PrF=KFC[r1,i][A = 1]− PrF=F? [A = 1]
∣∣

is bounded by ε. By definition we have PrF=KFC[r1,i][A = 1] = Pr[Xk
i,j = Xk′

i,j ] and, on
the other hand, PrF=F? [A = 1] = Pr[U = U ′] where U and U ′ are two independent
m-bit uniformly distributed random strings. This allows to conclude.

Lemma 12.6 With the notations of lemmas 12.4 and 12.5, we have that

Pr[ei] ≤ 1−
(

1− (q − 1)
(

1
2m

+ ε

))`

(12.15)

for all i ∈ {0, . . . , r2}.

Proof. For all i ∈ {0, . . . , r2}, let λi denote the number of X
(k)
i ’s different from all other

texts on all ` blocks, i.e.,

λi =
q∑

k=1

∏̀

j=1

q∏

k′=1
k′ 6=k

1
X

(k)
i,j 6=X

(k′)
i,j

.

Using the linearity of the mean and the independence between the ` blocks we obtain

E(λi) = q ·
(
Pr[X(1)

i,1 /∈ {X(2)
i,1 , X

(3)
i,1 , . . . , X

(q)
i,1 }]

)`
.

Letting Pq = Pr[X(1)
i,1 /∈ {X(2)

i,1 , X
(3)
i,1 , . . . , X

(q)
i,1 }], it is easy to show by induction on q

that Pq ≥ 1− (q − 1)( 1
2m + ε). For q = 1 the result is trivial. Assume that the result is
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true for some arbitrary q. Using the result of Lemma 12.5:

Pq+1 = Pq − Pr[X(1)
i,1 /∈ {X(2)

i,1 , X
(3)
i,1 , . . . , X

(q)
i,1 }, X(1)

i,1 = X
(q+1)
i,1 ]

≥ Pq − Pr[X(1)
i,1 = X

(q+1)
i,1 ] ≥ Pq −

(
1

2m
+ ε

)
,

from which we conclude that Pq ≥ 1 − (q − 1)
(

1
2m + ε

)
for all q > 0. From this and

from the expression we obtained for E(λi) we deduce that

E(λi) ≥ q ·
(

1− q − 1
2m

)`

. (12.16)

Since we also have that

E(λi) =
q∑

k=1

kPr[λi = k] ≤ q · Pr[λi 6= 0] = q · Pr[ei],

we deduce from (12.16) that

Pr[ei] ≤ 1−
(

1− (q − 1)
(

1
2m

+ ε

))`

.

Based on lemmas 12.4 and 12.6 it is now possible to upper-bound the advantage
of the best q-limited distinguisher for q > 2.

Theorem 12.3 Let r1, r2 > 0 be two positive integers. For any positive integer q > 1,
the advantage of the best q-limited distinguisher Aq between FKFC[r1,r2] and F? is such
that

AdvAq(FKFC[r1,r2],F
?) ≤ ε +

q−1∑

i=2

(
1− (

1− i
(

1
2m + ε

))`
)

,

where ε = max0≤i≤r2 BestAdv2(FKFC[r1,i],F
?).

Proof. Using the results obtained in lemmas 12.4 and 12.6 successively, we get

AdvAq(FKFC[r1,r2],F
?) ≤ AdvAq−1(FKFC[r1,r2],F

?) + Pr[er2 ]

≤ AdvAq−1(FKFC[r1,r2],F
?) + 1− (

1− (q − 1)
(

1
2m + ε

))`
.

Applying the same two steps recursively we get

AdvAq(FKFC[r1,r2], F
?) ≤ AdvA2(FKFC[r1,r2], F

?) +
q−1∑

i=2

(
1− (

1− i
(

1
2m + ε

))`
)

.

We conclude using the assumption that AdvA2(FKFC[r1,r2],F
?) ≤ ε.

Obviously, the bound on Pr[ei] we obtained in Lemma 12.6 cannot be used
directly to obtain a meaningful bound on the advantage of high order distinguishers
since the bound obtained in Theorem 12.3 is not tight enough. We address this problem
in the following subsection.
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Considering Several Rounds at the Same Time

We can improve the previous approach by considering t successive ei events
and give an upper bound on the probability that none of them occurs.

Lemma 12.7 Let r1, r2 > 0 be two positive integers and let FKFC[r1,r2] be as in (12.13).
For all q > 1, all i ∈ {1, . . . , r2}, and all t ≤ i we have

AdvAq(FKFC[r1,i], F
?) ≤ AdvAq−1(FKFC[r1,i], F

?) + Pr[e1, e2, . . . , et],

where ei is the event that one of the q inputs is different from all others on the ` blocks
at the output of FKFC[r1,i−1], i.e.,

ei =
{
∃k ∈ {1, . . . , q} s.t. ∀j ∈ {1, . . . , `} :

X
(k)
i,j /∈

{
X

(1)
i,j , . . . , X

(k−1)
i,j , X

(k+1)
i,j , . . . , X

(1)
i,j

}}
.

Proof. Let i ∈ {1, . . . , r2}, let t ≤ i, and let H0 : F = F? and H1 : F = FKFC[r1,i]. We
denote by e the event e1 ∪ e2 ∪ · · · ∪ et, so that e = e1 ∩ e2 ∩ · · · ∩ et. We have

AdvAq(H0, H1)
= |(PrH1 [Aq = 1|e]− PrH0 [Aq = 1|e])Pr[e] + (PrH1 [Aq = 1|e]− PrH0 [Aq = 1|e])Pr[e]|
≤ |PrH1 [Aq = 1|e]− PrH0 [Aq = 1|e]|+ Pr[e].

Using the same approach than that of the proof of Lemma 12.1, it is easy to see that

|PrH1 [Aq = 1|e]− PrH0 [Aq = 1|e]| ≤ AdvAq−1(H0, H1),

from which we deduce the announced result.

Lemma 12.8 With the notations of Lemma 12.7, we have that for all i ∈ {0, . . . , r2}
and all t ≤ i:

Pr[e1, e2, . . . , et] ≤
(
1− (

1− (q − 1)
(

1
2m + ε

))`
)t

. (12.17)

Proof. For t = 0 the result is trivial and for t = 1 it corresponds to that of Lemma 12.6.
Assume that t ≥ 2. We first have

Pr[e1, e2, . . . , et] = Pr[et|e1, e2, . . . , et−1] · Pr[e1, e2, . . . , et−1].

As the bound (12.16) on E(λi) in the proof of Lemma 12.6 only relies on the pairwise
independence of the inputs of the i-th round, the bound given by equation (12.15) on
Pr[ei] can also be proved for Pr[et|e1, e2, . . . , et−1]. Iterating, we finally obtain that

Pr[e1, e2, . . . , et] ≤
(
1− (

1− (q − 1)
(
( 1
2m + ε

))`
)t

.
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Based on lemmas 12.7 and 12.8 it is now possible to give a meaningful upper-
bound on the advantage of the best q-limited distinguisher for q > 2.

Theorem 12.4 Assume that the advantage of the best 2-limited distinguisher against
FKFC[r1,r2] is bounded by ε. For any positive q > 2 and set of integers {t2, . . . , tq−1} such
that

q−1∑

i=2

ti ≤ r2,

the advantage of the best q-limited distinguisher Aq against FKFC[r1,r2] is such that

AdvAq(FKFC[r1,r2], F
?) ≤ ε +

q−1∑

i=2

(
1− (

1− i
(

1
2m + ε

))`
)ti

.

Proof. Using the results obtained in lemmas 12.7 and 12.8 successively, we get

AdvAq(FKFC[r1,r2], F
?) ≤ AdvAq−1(FKFC[r1,r2], F

?) + Pr[e1, e2, . . . , etq−1 ]

≤ AdvAq−1(FKFC[r1,r2], F
?) +

(
1− (

1− (q − 1)
(

1
2m + ε

))`
)tq−1

.

Applying the same two steps recursively we get

AdvAq(FKFC[r1,r2], F
?) ≤ AdvA2(FKFC[r1,r2], F

?) +
q−1∑

i=2

(
1− (

1− i
(

1
2m + ε

))`
)ti

.

We conclude using the assumption that AdvA2(FKFC[r1,r2],F
?) ≤ ε.

Fixing r1 = 3, the previous theorem bounds, for any value of q > 2, the
advantage of the best q-limited distinguisher against a given number of rounds r2 of
FKFC. In Table 12.2 we give the best bounds we obtain for various values of r2, q, `,
and m. If one aims at a specific value of q and wants to select r2 in order to bound
the advantage of the best q-limited distinguisher, the best choice is probably to select
the ti’s such that Pr[e1, . . . , eti ] < ε, which bounds the advantage by (q − 1) · ε. The
following theorem generalizes this idea.

Theorem 12.5 Assume that the advantage of the best 2-limited distinguisher against
FKFC[r1,r2] is bounded by ε. Let

tq(β) = min
t
{Pr[e1, . . . , et] < β · ε} =

⌈
log(β·ε)

log

„
1−
“
1−(q−1)

(
1

2m + ε
)”`

«
⌉
.

For any q such that
q−1∑

i=2

ti(β) ≤ r2,
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N = 8 and m = 8
Q

QQr2
q 2 3 4 8 16 32 64

10 2−52 2−40 2−17 2−2 1 1 1
100 2−49 2−49 2−49 2−46 2−11 1 1
250 2−48 2−48 2−48 2−48 2−33 2−5 1
1000 2−46 2−46 2−46 2−46 2−46 2−35 2−2

N = 8 and m = 16
Q

QQr2
q 2 3 4 8 16 32 64

10 2−116 2−116 2−57 2−11 1 1 1
100 2−113 2−113 2−113 2−113 2−66 2−23 2−5

250 2−112 2−112 2−112 2−112 2−112 2−69 2−25

1000 2−110 2−110 2−110 2−110 2−110 2−110 2−110

N = 16 and m = 8
Q

QQr2
q 2 3 4 8 16 32 64

10 2−104 2−31 2−12 1 1 1 1
100 2−103 2−103 2−103 2−31 2−5 1 1
250 2−103 2−103 2−103 2−81 2−18 1 1
1000 2−102 2−102 2−102 2−102 2−82 2−12 1

Table 12.2: Bounds on AdvAq(FKFC[r1,r2],F
?) for r1 = 3 and various parameters.

the advantage of the best q-limited distinguisher Aq against FKFC[r1,r2] is such that:

AdvAd
(FKFC[r1,r2],F

?) ≤ ε +
q−1∑

i=2

(
1− (

1− i
(

1
2m + ε

))`
)ti(β)

≤ (1 + (q − 2) · β) · ε.

12.5 KFC in Practice

At this time, no key schedule has been specified for KFC. Of course, one can
apply the exact same trick as the one used for the key schedule of C (see Section 11.1),
i.e., use a key schedule based on a cryptographically secure pseudo-random generator
(for example the good old BBS [29] or a faster generator like QUAD [13, 14]). This
way, all the results we have proved assuming the mutual independence of the random
functions and permutations remain valid when implementing KFC in practice with a
128-bit secret key. We propose two sets of parameters:
Regular KFC: ` = 8, m = 8, r1 = 3, r2 = 100. These parameters lead to prov-
able security against 8-limited adaptive distinguishers. Consequently, Regular KFC is
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resistant to iterated attacks of order 4, which include linear and differential cryptanal-
ysis, the boomerang attack and others. Based on existing implementation results on C,
we estimate the encryption speed of Regular KFC to 15-25 Mbits/s on a Pentium IV
2GHz. The key schedule needs to generate approximately 222 cryptographically secure
pseudo-random bits.
Extra Crispy KFC: ` = 8, m = 16, r1 = 3, r2 = 1000. Using these quite
extreme parameters, we manage to obtain provable security against 70-limited adaptive
adversaries, but encryption rate could probably never reach more than 1 Mbit/s. Also,
the key schedule should produce 235 pseudo random bits, which means that Extra Crispy
KFC requires at least 4 GB of memory.

12.6 Further Improvements

We introduced KFC, a block cipher based on a three round Feistel scheme.
Each of the three round functions has an SPN-like structure for which we can either
compute or bound the advantage of the best q-limited adaptive adversary, for any value
of q. Using results from the Decorrelation Theory, we extend these results to the whole
KFC construction.

To the best of our knowledge, KFC is the first practical block cipher to propose
tight security proofs of resistance to large classes of attacks, including most classical
cryptanalysis (such as linear and differential cryptanalysis, taking hull effect in con-
sideration in both cases, higher order differential cryptanalysis, the boomerang attack,
differential-linear cryptanalysis, or the rectangle attack). Of course, this security guar-
antee has a price in terms of encryption rates which can be up to 500 times smaller
than that of the AES. Yet, KFC can certainly be improved in several ways.

For example, as a consequence of results by Naor and Reingold [120], it might
be possible to reduce the 3-round Feistel scheme to a 2-round Feistel scheme plus an
initial well chosen random permutation (and reduced-round versions of C could be
excellent candidates). We informally introduce PDB [148] for which we believe that
strong security results can be proved and which is certainly more efficient than KFC:

PDB[r0, r1, r2] = Ψ(FKFC[r1,r2], F
′
KFC[r1,r2]) ◦ C[r0].

Several similar constructions can be thought off, using for example results obtained by
Lucks in [103] or by Maurer et. al in [113].

Another possible improvement could be to guarantee security not only against
chosen plaintext attacks (CPA) but against chosen ciphertext attacks (CCA), which
might be easily done on the construction C[r0]◦PDB[r0, r1, r2], still according to results
in [120].

Last but not least, the bound we obtain in Lemma 12.6 (and in Lemma 12.8)
essentially relies on Markov’s inequality since we exclusively focus on the mean E(λi)
to bound Pr[λi 6= 0]. Using the Bienaymé-Chebyshev inequality (for example) might
result in a tighter bound but would render the proofs more complex.
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Conclusion and Future Work

Since the publication of the Diffie-Hellman key exchange, every new public key
cryptographic scheme has to provide strong arguments (if not a rigorous proof) of its
security in order to get a chance to be even considered by the academic community.
By contrast, the Advanced Encryption Standard does not give any strong security
guarantee against the most basic statistic attacks, and though this fact does not seem
to be much of a concern. This situation is absurd since, in practice, the end-user is
essentially interested by the security of the global cryptographic system, such as hybrid
encryption for example, which at least requires that of its individual parts.

Yet, provably secure symmetric schemes exist, the Vernam cipher being cer-
tainly the most representative example. In that particular case though, we note that
once the security starts to decrease, it does exponentially. For example, it is clear that
if the same key is used twice in the Vernam cipher, then the exclusive-or of the two
ciphertexts is equal to the exclusive-or of the two plaintexts, an unfortunate feature
which results from the fact that only linear operations are used within the encryption
process. The Luby-Rackoff construction is another example of a provably secure sym-
metric construction; but it suffers from the drawback of being completely impractical
due to the huge quantity of randomness it requires to instantiate the round functions.
These two examples illustrate the fact that in the struggle for provably secure sym-
metric schemes, cryptanalysts often end up with either unpractical schemes or designs
whose practical security collapse as soon as the security proofs’ hypotheses are violated.

For these reasons, most modern block cipher designs only focus on heuristic
security arguments which are essentially intuitive arguments that strengthen the plau-
sibility of the hypothesis that none of the already known cryptanalytic attacks applies
to the new design. Naturally, each new block cipher is considered as a new challenge by
the cryptographic community, leading to the discovery of new attack methods. For ex-
ample the block cipher SAFER+ [85] lead to the invention of integral cryptanalysis [69]
which was then applied on the block ciphers SQUARE [40], IDEA [97,118], AES [41,51]
and FOX [76,165], and afterwards extended to attack Twofish [104,136].

The block cipher DFC [54,59] started to fill the gap between the perfect security
of the impractical Vernam cipher and the absence of security guarantee of practical block
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ciphers. Our proposals C and (to some extent) KFC are fast block ciphers which provide
rigorous security proofs of resistance to a wider range cryptanalytic attacks than the
DFC. Furthermore, they both differ from previous provably secure constructions in as
far as they build their foundations on the same principles that drive all standard designs:
they avoid the use of algebraic decorrelation modules that surely facilitate the security
proofs but also certainly weaken any security argument against high order adversaries.
When designing C and KFC we assumed that the best strategy was probably to take the
best from both worlds: strong arguments from provable security and intuitive arguments
from heuristic security.

There is still plenty of space for improvements. In particular, we believe that C

is secure against higher order adversaries. More precisely, there might be a link between
the decorrelation order of the substitution boxes and that of the whole construction,
so there might be an elegant trade-off between the amount of randomness within the
substitution boxes and the level of security provided by C. Similarly, the security proofs
of KFC can definitely be improved, for example by working on the principle that not only
one round input might be different from all the others on all boxes, but by assuming
that this can happen for several inputs at the same time.

Implementation considerations apart, designing a block cipher essentially boils
down to select a subset of the permutations defined by the perfect cipher. With security
in mind, making sure that the distribution matrix of the block cipher considered is as
close as possible to that of the perfect cipher appears to be, in itself, a very natural
thing to aim to and a quite desirable feature. This task is highly challenging since
we furthermore have to cope with implementation issues, which seem to restrict the
possible permutation subsets to those containing permutations which are all based on
some specific structure (such as substitution-permutation networks or Feistel schemes).
Yet, being close to the perfect cipher is simply the exact assumption that is made on
the underlying block cipher in the ideal cipher model [12] which is considered in most
operation modes security proofs [11]. Consequently, we do not see any reason why we
should not expect that kind of guarantee from future constructions. To quote Jacques
Stern,

“[...] the methodology of provable security has become unavoidable in de-
signing, analyzing and evaluating new schemes” [144].

This statement initially concerns public key schemes. We hope that this thesis makes
a significant step towards its extension to block ciphers.
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Appendix A

A Proof of Sanov’s Theorem

Lemma 1.1 Let Z be a finite set. We have |Pq| ≤ (q + 1)|Z|.

Proof. An element of Pq is a vector with |Z| components, each of which can take at
most q + 1 values.

Theorem 1.1 Let Z be a finite set. For any type P ∈ Pq(Z) we have

1
(q + 1)|Z|

2qH(P) ≤ |Tq(P)| ≤ 2qH(P).

Proof. As P ∈ Pq, we can write P = (n1
q , n2

q , . . . ,
n|Z|

q ) for some 0 ≤ n1, n2, . . . , n|Z| ≤ q
where

∑
i ni = q. Clearly, |Tq(P)| is equal to

(
q

n1

)(
q − n1

n2

)
· · ·

(
q −∑

i6=|Z| ni

n|Z|

)
=

q!
n1!n2! · · ·n|Z|!

=
(

q

n1, n2, . . . , n|Z|

)
.

To bound |Tq(P)|, we thus need to bound a multinomial coefficient. We generalize a
simple trick used in the binary case in [37, p.284]. Denoting pi = ni

q , we have that
∑|Z|

i=1 pi = 1, so that, using the multinomial theorem,

1 = (p1 + p2 + · · ·+ p|Z|)q =
∑

k1,k2,...,k|Z|

(
q

k1, k2, . . . , k|Z|

)
pk1
1 pk2

2 · · · p
k|Z|
|Z| ,

where the sum runs over all integer indices k1, k2, . . . , k|Z| such that
∑|Z|

i=1 ki = q. As
all the terms in the sum are positive, we obtain that for the n1, n2, . . . , n|Z| term

1 ≥
(

q

n1, n2, . . . , n|Z|

)
pn1
1 pn2

2 · · · p
n|Z|
|Z| . (A.1)
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Moreover,
∏

i

pni
i =

∏

i

(
ni

q

)ni

= 2
P

i ni log
ni
q = 2−qH(P). (A.2)

From (A.1) and (A.2) we conclude that

|Tq(P)| =
(

q

n1, n2, . . . , n|Z|

)
≤ 2qH(P).

On the other hand, since the sum in the multinomial theorem runs over less than
(q + 1)|Z| terms,

1 ≤ (q + 1)|Z| max
k1,k2,...,k|Z|

(
q

k1, k2, . . . , k|Z|

)
pk1
1 pk2

2 · · · p
k|Z|
|Z| .

The term we need to maximize corresponds to the probability mass function of a multi-
nomial distribution with outcome probabilities p1, p2, . . . , p|Z|, so that the maximum
value is obtained for the most probable outcome, which is obtained for k1 = qp1 = n1,
k2 = qp2 = n2,. . . ,k|Z| = qp|Z| = n|Z|. Therefore, using (A.2),

1 ≤ (q + 1)|Z|
(

q

n1, n2, . . . , n|Z|

)
pn1
1 pn2

2 · · · p
n|Z|
|Z|

= (q + 1)|Z|
(

q

n1, n2, . . . , n|Z|

)
2−qH(P)

= (q + 1)|Z| |Tq(P)| 2−qH(P).

Which leads to the lower bound on |Tq(P)|.

Theorem 1.2 Let Z be a finite set and P be a probability distribution on Z. Let
Z1, Z2, . . . , Zq be q i.i.d. samples drawn according to P. For any P′ ∈ Pq(Z) we have

1
(q + 1)|Z|

2−qD(P′‖P) ≤ Pr[PZq = P′] ≤ 2−qD(P′‖P).

Proof. On the one hand we have

Pr[PZq = P′] =
∑

zq∈Tq(P′)

PrPq [zq] =
∑

zq∈Tq(P′)

2−q(H(Pzq )+D(Pzq‖P)),

using Lemma 6.1. Since we sum over zq ∈ Tq(P′), we have Pzq = P′, so that we obtain

Pr[PZq = P′] =
∣∣Tq(P′)

∣∣ 2−q(H(P′)+D(P′‖P)).
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The bounds obtained on |Tq(P′)| in Theorem 1.1 lead to the announced result.

Theorem 1.3 (Sanov’s theorem) Let P be a probability distribution over a finite set
Z, Z ′ be a non-empty subset of Z, and Π be a set of probability distributions of full
support over Z ′. If Z1, Z2, . . . , Zq are q i.i.d. random variables drawn according to the
distribution P, we have

Pr[PZq ∈ Π] ≤ (q + 1)|Z|2−qD(Π‖P),

where D(Π‖P) = infP′∈Π D(P′‖P). Moreover, if the closure of Π ⊂ P(Z ′) is equal to the

closure of its interior, i.e., if Π =
◦
Π under the topology of probability distributions over

Z ′, then
Pr[PZq ∈ Π] .= 2−qD(Π‖P).

Proof. On the one hand we have

Pr[PZq ∈ Π] =
∑

P∈Π

Pr[PZq = P ] =
∑

P∈Π∩Pq(Z)

Pr[PZq = P ], (A.3)

since Pr[PZq = P ] = 0 when P /∈ Pq(Z). Using Theorem 1.2 (which we can do, as
P ∈ Pq(Z)) we obtain

Pr[PZq ∈ Π] ≤
∑

P∈Π∩Pq(Z)

2−qD(P‖P)

≤ |Π ∩ Pq(Z)| max
P∈Π∩Pq(Z)

2−qD(P‖P)

≤ |Π ∩ Pq(Z)| sup
P∈Π

2−qD(P‖P)

= |Π ∩ Pq(Z)| 2−q infP∈Π D(P‖P).

As by definition infP∈Π D(P‖P) = D(Π‖P) and as |Π ∩ Pq(Z)| ≤ |Pq(Z)| ≤ (q + 1)|Z|

by Lemma 1.1, we conclude that

Pr[PZq ∈ Π] ≤ (q + 1)|Z|2−qD(Π‖P), (A.4)

which is the upper bound we wanted to obtain. We now consider the case where
the closure of Π ⊂ Pq(Z ′) is equal to the closure of its interior. If D(Π‖P) = +∞
(which happens when P(a) = 0 for some a ∈ Z ′), the theorem is obviously true since
Pr[PZq ∈ Π] = 0 in this case. We now assume that D(Π‖P) < ∞ (i.e., P(a) > 0 for
all a ∈ Z ′). For all P ∈ P and d > 0, we denote by B∞(P, δ) ⊂ P the set of all

distributions P ′ ∈ P such that ‖P ′ − P‖∞ < δ. Let ε > 0. Since Π =
◦
Π under the

topology of distributions over Z ′, there exists P′ ∈
◦
Π (thus of full support over Z ′) such

that ∣∣D(P′‖P)−D(Π‖P)
∣∣ < ε (A.5)
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and ε′ > 0 such that B∞(P′, ε′) ⊂
◦
Π. For all positive integer q such that q ≥

(
ε′
2

)−1

there exists Pq ∈ B∞(P′, ε′)∩Pq(Z ′). Since P 7→ D(P‖P) is a continuous function over
P(Z ′) (as we assumed that P(a) > 0 for all a ∈ Z ′), this means that

∣∣D(Pq‖P)−D(P′‖P)
∣∣ < ε (A.6)

when ε′ is chosen small enough (i.e., when q is large enough). Starting from (A.3) we
have

Pr[PZq ∈ Π] =
∑

Q∈Π∩Pq(Z)

Pr[PZq = Q] ≥ Pr[PZq = Pq] ≥ 1
(q + 1)|Z|

2−qD(Pq‖P),

using Theorem 1.2. Consequently,

1
q

log
Pr[PZq ∈ Π]
2−qD(Π‖P)

= D(Π‖P) +
1
q

log Pr[PZq ∈ Π]

≥ D(Π‖P)−D(Pq‖P)− |Z| log(q + 1)
q

,

which is (according to (A.5) and (A.6)) greater than −3ε when q is large enough. This
holds for any ε > 0, so that

lim
q→∞

1
q

log
Pr[PZq ∈ Π]
2−qD(Π‖P)

≥ 0.

This, combined with (A.4) allows us to conclude.

– 210 –



Appendix B

Proof of Lemma 6.6

We first prove two lemmas.

Lemma 2.1 Let P0 and P1 be two probability distributions with finite support Z. Let
pz = P0[z] and ε = (εz)z∈Z where εz = P1[z]−P0[z]

pz
. Assuming that |εz| ≤ 1

2 for all z ∈ Z,
we have ∣∣∣∣∣

1
ln 2
− 1

ln 2

∑

z∈Z
pz

√
1 + εz − B(P0, P1)

∣∣∣∣∣ ≤
5

96 ln 2
‖P0‖2∞‖ε‖42.

Proof. Since |εz| ≤ 1
2 for all z ∈ Z we have

∑

z∈Z
pz

√
1 + εz ≥

∑

z∈Z
pz

√
1− |εz| ≥

∑

z∈Z
pz

√
1− 1

2
≥ 1

2
.

Denoting u = 1−∑
z∈Z pz

√
1 + εz, we thus have 0 ≤ u ≤ 1

2 , B(P0, P1) = − log(1− u),
and want to bound

∣∣ u
ln 2 + log(1− u)

∣∣. We have

log(1− u) = − 1
ln 2

∞∑

k=1

uk

k

so that
∣∣∣ u

ln 2
+ log(1− u)

∣∣∣ =
1

ln 2

∞∑

k=2

uk

k

=
u2

2 ln 2
+

1
ln 2

∞∑

k=3

uk

k

≤ u2

2 ln 2
+

1
3 ln 2

∞∑

k=3

uk

=
u2

2 ln 2
+

1
3 ln 2

· u3

1− u
.
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Since u ≤ 1
2 , we have u3

1−u ≤ u2 and thus
∣∣∣ u

ln 2
+ log(1− u)

∣∣∣ ≤ 5
6 ln 2

u2. (B.1)

We will now bound u2:

u2 =

(
1−

∑
z

pz

√
1 + εz

)2

=

(∑
z

pz

∞∑

k=2

1
2(1

2 − 1) · · · (1
2 − k + 1)

k!
εk
z

)2

≤
(∑

z

pz

∞∑

k=2

∣∣∣∣∣
1
2(1

2 − 1) · · · (1
2 − k + 1)

k!

∣∣∣∣∣ |εz|k
)2

.

Since
1
2(1− 1

2)
2!

=
1
8

and

∣∣∣∣∣
1
2 · · · (1

2 − k)
(k + 1)!

∣∣∣∣∣ ≤
∣∣∣∣∣

1
2 · · · (1

2 − k + 1)
k!

∣∣∣∣∣
for all k ≥ 1, we have

u2 ≤ 1
64

(∑
z

pz

∞∑

k=2

|εz|k
)2

≤ ‖P0‖2∞
64

(∑
z

∞∑

k=2

|εz|k
)2

=
‖P0‖2∞

64

(∑
z

|εz|2 +
∑

z

|εz|3
1− |εz|

)2

.

Since we assumed that |εz| ≤ 1
2 for all z ∈ Z, |εz |3

1−|εz | ≤ |εz|2 and we finally obtain

u2 ≤ 1
16
‖P0‖2∞‖ε‖42.

From the previous inequality and (B.1) we conclude that
∣∣∣ u

ln 2
+ log(1− u)

∣∣∣ ≤ 5
96 ln 2

‖P0‖2∞‖ε‖42
which concludes the proof.

Lemma 2.2 Let P0 and P1 be two probability distributions over a finite set Z. Let
pz = P0[z] and ε = (εz)z∈Z where εz = P1[z]−P0[z]

pz
. Assuming that |εz| ≤ 1

2 for all z ∈ Z,
we have ∣∣∣∣∣

1
ln 2

∑

z∈Z
pz

√
1 + εz − 1

ln 2
+

1
8 ln 2

∑

z∈Z
pzε

2
z

∣∣∣∣∣ ≤
1

8 ln 2

√
|Z|‖P0‖∞‖ε‖32.
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Proof. Expanding
√

1 + εz in Taylor series we have

√
1 + εz = 1 +

1
2
εz −

1
2(1− 1

2)
2

ε2z +
∞∑

k=3

1
2(1

2 − 1) · · · (1
2 − k + 1)

k!
εk
z ,

so that, since
∑

z pzεz = 0,

∑
z

pz

√
1 + εz = 1−

1
2(1− 1

2)
2

∑
z

pzε
2
z +

∑
z

∞∑

k=3

1
2(1

2 − 1) · · · (1
2 − k + 1)

k!
pzε

k
z ,

and thus
∣∣∣∣∣

1
ln 2

∑
z

pz

√
1 + εz − 1

ln 2
+

1
2(1− 1

2)
2 ln 2

∑
z

pzε
2
z

∣∣∣∣∣ =

∣∣∣∣∣
1

ln 2

∑
z

∞∑

k=3

1
2 · · · (1

2 − k + 1)
k!

pzε
k
z

∣∣∣∣∣ .

We will now bound the right-hand side of the previous equation, which we denote by
R. We have

R =

∣∣∣∣∣
∑

z

1
2(1

2 − 1)(1
2 − 2)

3! ln 2
pzε

3
z +

∑
z

∞∑

k=4

1
2 · · · (1

2 − k + 1)
k! ln 2

pzε
k
z

∣∣∣∣∣

≤
1
2(1− 1

2)(2− 1
2)

3! ln 2

∑
z

pz |εz|3 +
∑

z

∞∑

k=4

∣∣∣∣∣
1
2 · · · (1

2 − k + 1)
k! ln 2

∣∣∣∣∣ pz |εz|k .

It is easy to see that

1
2(1− 1

2)(2− 1
2)

3!
=

1
16

and
∣∣∣∣
λ? · · · (λ? − k)

(k + 1)!

∣∣∣∣ ≤
∣∣∣∣
λ? · · · (λ? − k + 1)

k!

∣∣∣∣

for all k ≥ 1 so that

R ≤ 1
16 ln 2

∑
z

pz |εz|3 +
1

16 ln 2

∑
z

∞∑

k=4

pz |εz|k

≤ 1
16 ln 2

∑
z

pz |εz|3 +
1

16 ln 2

∑
z

pz |εz|4
∞∑

k=0

|εz|k

=
1

16 ln 2

∑
z

pz |εz|3 +
1

16 ln 2

∑
z

pz
|εz|4

1− |εz| .

As we assumed that |εz| ≤ 1
2 for all z ∈ Z, we have |εz |4

1−|εz | ≤ |εz|3, which leads to

R ≤ 1
8 ln 2

∑

z∈Z
pz |εz|3 ≤ 1

8 ln 2
‖P0‖∞‖ε‖33. (B.2)
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Using a classical extension of Cauchy’s inequality (see [64]) we have

‖ε‖33 ≤
√
|Z|‖ε‖36 =

√
|Z|

√∑

i

(
|xi|2

)3
≤

√
|Z|

√√√√
(∑

i

|xi|2
)3

=
√
|Z|‖ε‖32.

From this last inequality and (B.2) we obtain

R ≤ 1
8 ln 2

√
|Z|‖P0‖∞‖ε‖32.

Lemmas 2.1 and 2.2 easily lead to Lemma 6.6.
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Proofs of the Lemmas Used in Example 7.3

Lemma 3.1 Let u = u1u2 . . . , un be a n-bit binary string and let w denote its Hamming
weight. We have

∑

1≤j<k≤n

ujuk =
w(w − 1)

2
.

Proof. It is easy to see that

∑

1≤j<k≤n

ujuk =
n−1∑

j=1

uj

n∑

k=j+1

uk = (w − 1) + (w − 2) + · · · 1 =
w−1∑

`=1

` =
w(w − 1)

2
.

Lemma 3.2 For any integer n > 2 such that 4 divides n + 1, we have:

(n−3)/4∑

k=0

(
n

4k

)
=

(n−3)/4∑

k=0

(
n

4k + 3

)
=

1
4
(2n + (1 + i)n + (1− i)n),

(n−3)/4∑

k=0

(
n

4k + 1

)
=

(n−3)/4∑

k=0

(
n

4k + 2

)
=

1
4
(2n − i(1 + i)n + i(1− i)n),

where i is the complex imaginary unit.

Proof. The equalities between the sums of binomial coefficients can be shown by letting
` = n−3

4 − k in both cases, using the fact that
(
n
u

)
=

(
n

n−u

)
for all u = 0, 1, . . . , n.

From the binomial theorem we easily obtain

2n + (1 + i)n + (1− i)n =
n∑

`=0

(
n

`

)
(1 + i` + (−i)`) =

n∑

`=0

(
n

`

)
f(`),
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where we let f(`) = 1 + i` + (−i)`. Obviously, for all integer k ≥ 0, f(4k) = 3,
f(4k + 1) = 1, f(4k + 2) = −1, and f(4k + 3) = 1. This leads to

2n + (1 + i)n + (1− i)n

=

n−3
4∑

k=0

(
3
(

n

4k

)
+

(
n

4k + 1

)
−

(
n

4k + 2

)
+

(
n

4k + 3

))

= 4

n−3
4∑

k=0

(
n

4k

)
+

n−3
4∑

n=0

(
−

(
n

4k

)
+

(
n

4k + 1

)
−

(
n

4k + 2

)
+

(
n

4k + 3

))

= 4

n−3
4∑

k=0

(
n

4k

)
+ (1− 1)n = 4

n−3
4∑

k=0

(
n

4k

)
,

which proves the first equality. The proof of the second one is similar:

2n − i(1 + i)n + i(1− i)n =
n∑

`=0

(
n

`

)
(1− i`+1 − (−i)`) =

n∑

`=0

(
n

`

)
g(`),

where we let g(`) = 1 − i`+1 − (−i)`. For all integer k ≥ 0 we have g(4k) = 1,
g(4k + 1) = 3, g(4k + 2) = 1, and g(4k + 3) = −1. This leads to

2n − i(1 + i)n + i(1− i)n

=

n−3
4∑

k=0

((
n

4k

)
+ 3

(
n

4k + 1

)
+

(
n

4k + 2

)
−

(
n

4k + 3

))

= 4

n−3
4∑

k=0

(
n

4k + 1

)
+

n−3
4∑

k=0

((
n

4k

)
−

(
n

4k + 1

)
+

(
n

4k + 2

)
−

(
n

4k + 3

))

= 4

n−3
4∑

k=0

(
n

4k + 1

)
+ (1− 1)n = 4

n−3
4∑

k=0

(
n

4k + 1

)
.
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Appendix D

The Substitution Box of DEAN27.

Tables D.1 and D.2 describe the fixed substitution box that we suggest for
DEAN27.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
832 931 235 823 171 434 569 138 911 737 749 72 436 498 487 427 946 284
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
127 11 172 225 142 496 428 312 242 101 876 181 297 564 407 19 553 675
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
41 793 920 165 305 461 729 709 497 471 973 125 865 565 680 502 227 874
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
278 336 289 508 599 450 453 331 414 329 23 908 813 268 895 53 70 462
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
394 224 115 309 292 113 704 514 900 768 986 639 200 119 930 527 492 808
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
756 786 500 555 644 685 110 511 720 122 385 468 383 794 892 951 430 724
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
554 523 837 649 667 314 534 236 330 633 711 582 516 134 898 469 63 399
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
610 921 400 841 617 587 562 918 820 38 277 678 576 725 97 179 367 174
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
302 85 797 293 334 867 741 949 810 313 791 796 981 533 538 870 705 765
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
653 71 998 659 137 294 557 815 5 954 104 822 351 636 985 977 30 742
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
202 69 435 608 893 228 204 250 666 362 626 552 648 117 392 859 398 875
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
107 381 812 173 355 739 784 241 785 884 646 887 402 304 75 56 335 79
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
501 222 844 445 748 504 616 901 194 231 442 55 803 849 420 763 581 631
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
456 995 728 560 690 240 58 189 248 943 346 579 826 752 856 299 755 798
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
333 247 601 730 180 996 111 493 175 413 78 861 620 451 269 907 913 266
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
774 133 8 291 14 62 868 324 154 126 717 962 366 243 689 970 83 848
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
858 459 586 692 219 606 282 899 544 651 455 513 286 520 374 50 358 182
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
904 630 112 160 732 98 207 164 483 571 128 449 215 187 482 448 424 991
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
106 577 838 679 67 405 288 863 417 103 670 378 267 642 489 779 280 339
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
64 775 695 337 528 789 198 753 327 316 938 708 909 213 35 613 474 596
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
712 747 184 974 792 51 10 221 118 480 760 26 615 340 551 997 229 934
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
150 421 714 491 252 733 61 719 477 919 703 814 510 387 191 764 463 885
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
426 568 296 706 230 44 148 688 348 389 782 672 589 271 923 130 404 982
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
851 910 759 530 694 393 68 121 546 349 994 408 647 593 969 441 612 96

Table D.1: The fixed substitution box on Z3
10 of DEAN27 (part 1)
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Appendix D The Substitution Box of DEAN27.

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
82 505 31 945 254 486 319 783 81 162 879 936 183 193 444 49 944 464
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
490 264 488 563 9 457 643 976 84 295 7 116 377 984 864 59 955 507
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
1 761 906 657 758 806 210 261 941 750 380 972 169 933 136 926 698 674

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
244 738 237 472 146 338 176 270 811 149 556 524 123 668 669 548 574 506
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
429 24 629 446 987 354 368 332 246 623 959 559 303 539 743 773 443 836
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
700 990 583 185 206 52 306 147 795 883 388 894 2 950 888 124 567 641
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
638 272 716 734 561 419 135 199 396 693 216 167 942 359 619 683 476 166
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
992 77 361 958 105 458 186 431 595 665 233 740 16 89 821 360 925 352
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
522 143 701 975 42 780 274 141 76 301 256 854 245 29 819 830 418 308
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
889 846 223 707 188 20 673 33 36 787 584 32 853 109 73 54 542 828
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
214 357 287 891 603 645 158 829 598 177 310 503 824 727 129 34 957 201
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
234 585 372 263 877 573 93 454 805 499 344 253 549 495 37 916 590 713
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
963 897 91 376 878 655 258 767 48 699 966 226 550 470 731 605 635 547
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
478 276 788 108 769 323 903 262 161 197 239 772 86 341 369 650 364 345
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
771 411 710 438 373 410 687 722 94 988 328 406 205 356 43 872 634 375
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
871 609 259 494 353 371 621 917 702 57 238 425 968 594 831 866 543 825
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
409 592 735 102 912 940 847 517 961 343 386 475 283 588 718 625 661 663
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
290 852 195 325 681 558 279 628 212 927 307 979 637 350 881 232 65 800
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
537 423 15 850 935 799 656 391 440 217 403 953 999 980 363 781 575 676
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
842 151 660 914 627 140 120 967 540 156 6 762 211 640 370 896 275 220
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
746 776 924 816 192 25 485 384 22 273 602 12 518 691 298 532 572 47
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
770 915 802 664 80 460 757 416 611 465 790 835 512 4 618 139 479 0
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
322 964 285 412 95 545 203 965 251 153 379 60 658 766 686 342 671 145
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
778 833 845 452 529 260 415 326 971 624 804 948 255 721 993 597 190 466
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
827 922 983 395 818 843 114 320 862 90 21 654 390 715 978 525 87 18
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
614 99 952 809 481 315 157 536 168 218 929 178 566 17 249 159 92 3
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
622 365 591 437 422 321 74 947 882 447 100 937 600 257 956 960 939 318
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
439 467 682 604 531 578 632 473 66 152 902 839 857 736 39 45 163 432
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
860 840 27 382 509 684 580 570 880 209 526 928 754 40 777 801 401 347
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
170 311 662 989 886 515 521 869 196 855 144 890 541 265 677 88 131 697
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
317 208 535 751 834 807 652 607 873 696 817 726 745 397 46 723 132 28
990 991 992 993 994 995 996 997 998 999
484 932 13 433 905 744 281 519 300 155

Table D.2: The fixed substitution box on Z3
10 of DEAN27 (part 2).
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Appendix E

Complementary Informations on the Generalized Linear

Cryptanalysis of SAFER

5.1 List of Some of the Possible Successions of Patterns on

the Linear Layer

1 → 1 [0000000*]
1−→ [*0000000]

1 → 2 [000*0000]
1−→ [**000000] [00000*00]

1−→ [*000*000] [000000*0]
1−→ [*0*00000]

2 → 1 [000*000*]
1−→ [0*000000] [00000*0*]

1−→ [0000*000] [000000**]
1−→ [00*00000]

1 → 3 None.

2 → 2
[0*0*0000]

1−→ [0000**00] [0*000*00]
1−→ [0*000*00] [00**0000]

1−→ [00**0000]

[00*000*0]
1−→ [0*0*0000] [000*0*00]

1−→ [0*00*000] [000*00*0]
1−→ [0**00000]

[0000**00]
1−→ [00*000*0] [0000*0*0]

1−→ [0000*0*0] [00000**0]
1−→ [00*0*000]

3 → 1 None.

1 → 4
[0*000000]

1−→ [**00**00] [00*00000]
1−→ [****0000] [0000*000]

1−→ [*0*0*0*0]

[0000000*]
2−→ [***0*000]

2 → 3

[0*00000*]
2−→ [*0*00*00] [0*00000*]

1−→ [0*00**00] [00*0000*]
2−→ [*00**000]

[00*0000*]
1−→ [0***0000] [000*000*]

2−→ [0*0*0*00] [000*000*]
2−→ [*0*0*000]

[0000*00*]
2−→ [**0000*0] [0000*00*]

1−→ [00*0*0*0] [00000*0*]
2−→ [0000***0]

[00000*0*]
2−→ [***00000] [000000**]

2−→ [00**00*0] [000000**]
2−→ [**00*000]

3 → 2

[0***0000]
2−→ [**000000] [0*0*0*00]

1−→ [*0000*00] [0*00**00]
2−→ [*000*000]

[0*0000**]
2−→ [*0000*00] [00**00*0]

1−→ [*00*0000] [00*0*0*0]
2−→ [*0*00000]

[00*00*0*]
2−→ [*00*0000] [000**00*]

2−→ [*00000*0] [000*0*0*]
2−→ [*0*00000]

[000*00**]
2−→ [*000*000] [0000***0]

1−→ [*00000*0] [00000***]
2−→ [**000000]

4 → 1
[0*0*0*0*]

1−→ [00000*00] [00**00**]
1−→ [000*0000] [000*0***]

2−→ [*0000000]

[0000****]
1−→ [000000*0]

1 → 5 None.

Table E.1: List of possible succession of patterns on the linear layer of SAFER.
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Appendix E Complementary Informations on SAFER

2 → 4

[**000000]
254−−−→ [**00**00] [**000000]

255−−−→ [00**00**] [*0*00000]
254−−−→ [****0000]

[*0*00000]
255−−−→ [0000****] [*00*0000]

254−−−→ [**0000**] [*000*000]
254−−−→ [*0*0*0*0]

[*000*000]
255−−−→ [0*0*0*0*] [*0000*00]

254−−−→ [*00**00*] [*00000*0]
254−−−→ [*0*00*0*]

[0**00000]
255−−−→ [00****00] [0*0*0000]

254−−−→ [****0000] [0*0*0000]
254−−−→ [0000****]

[0*00*000]
255−−−→ [0**00**0] [0*000*00]

254−−−→ [*0*0*0*0] [0*000*00]
254−−−→ [0*0*0*0*]

[0*0000*0]
1−→ [0**0**00] [0*00000*]

252−−−→ [*0*00*0*] [00**0000]
254−−−→ [**00**00]

[00**0000]
254−−−→ [00**00**] [00*0*000]

255−−−→ [0*0**0*0] [00*00*00]
1−→ [0****000]

[00*000*0]
254−−−→ [*0*0*0*0] [00*000*0]

254−−−→ [0*0*0*0*] [00*0000*]
252−−−→ [*00**00*]

[000**000]
1−→ [0**0*0*0] [000*0*00]

254−−−→ [0*0**0*0] [000*00*0]
254−−−→ [0**00**0]

[000*000*]
2−→ [**0*0*00] [000*000*]

252−−−→ [*0*0*0*0] [000*000*]
252−−−→ [0*0*0*0*]

[0000**00]
254−−−→ [**00**00] [0000**00]

254−−−→ [00**00**] [0000*0*0]
254−−−→ [****0000]

[0000*0*0]
254−−−→ [0000****] [0000*00*]

252−−−→ [**0000**] [00000**0]
254−−−→ [00****00]

[00000*0*]
252−−−→ [****0000] [00000*0*]

2−→ [*000***0] [00000*0*]
252−−−→ [0000****]

[000000**]
252−−−→ [**00**00] [000000**]

2−→ [*0**00*0] [000000**]
252−−−→ [00**00**]

3 → 3

[0*0*00*0]
2−→ [**0*0000] [0*0*000*]

1−→ [*000**00] [0*0*000*]
2−→ [0*0**000]

[0*000**0]
2−→ [*000*0*0] [0*000*0*]

1−→ [**000*00] [0*000*0*]
2−→ [0*00*0*0]

[0*0000**]
4−→ [**00*000] [00**0*00]

2−→ [**000*00] [00**000*]
1−→ [*0**0000]

[00**000*]
2−→ [0**00*00] [00*00**0]

2−→ [*0*000*0] [00*00*0*]
4−→ [***00000]

[00*000**]
1−→ [**0*0000] [00*000**]

2−→ [0**000*0] [000***00]
2−→ [*000**00]

[000**0*0]
2−→ [*0**0000] [000**00*]

4−→ [*0*0*000] [000*0*0*]
1−→ [**00*000]

[000*0*0*]
4−→ [*0*00*00] [000*00**]

1−→ [***00000] [000*00**]
4−→ [*00**000]

[0000**0*]
1−→ [*0*000*0] [0000**0*]

2−→ [00*0**00] [0000*0**]
1−→ [*000*0*0]

[0000*0**]
2−→ [00***000] [00000***]

4−→ [**0000*0] [00000***]
1−→ [*0*0*000]

4 → 2

[****0000]
252−−−→ [**000000] [****0000]

254−−−→ [00**0000] [****0000]
254−−−→ [0000**00]

[****0000]
255−−−→ [000000**] [**00**00]

252−−−→ [*000*000] [**00**00]
254−−−→ [0*000*00]

[**00**00]
254−−−→ [00*000*0] [**00**00]

255−−−→ [000*000*] [**0000**]
252−−−→ [*0000*00]

[**0000**]
254−−−→ [00*0000*] [*0*0*0*0]

252−−−→ [*0*00000] [*0*0*0*0]
254−−−→ [0*0*0000]

[*0*0*0*0]
254−−−→ [0000*0*0] [*0*0*0*0]

255−−−→ [00000*0*] [*0*00*0*]
252−−−→ [*00*0000]

[*0*00*0*]
254−−−→ [0000*00*] [*00**00*]

252−−−→ [*00000*0] [*00**00*]
254−−−→ [0*00000*]

[0***000*]
2−→ [**000000] [0**00**0]

254−−−→ [00*0*000] [0**00**0]
255−−−→ [000*0*00]

[0*0**0*0]
254−−−→ [0**00000] [0*0**0*0]

255−−−→ [00000**0] [0*0*0**0]
1−→ [00*00*00]

[0*0*0*0*]
252−−−→ [*0*00000] [0*0*0*0*]

254−−−→ [0*0*0000] [0*0*0*0*]
254−−−→ [0000*0*0]

[0*0*0*0*]
254−−−→ [00000*0*] [0*00**0*]

2−→ [*000*000] [00****00]
254−−−→ [0*00*000]

[00****00]
255−−−→ [000*00*0] [00**0**0]

1−→ [000**000] [00**00**]
252−−−→ [*000*000]

[00**00**]
254−−−→ [0*000*00] [00**00**]

254−−−→ [00*000*0] [00**00**]
254−−−→ [000*000*]

[00*0*0**]
2−→ [*0*00000] [000****0]

1−→ [0*0000*0] [0000****]
252−−−→ [**000000]

[0000****]
254−−−→ [00**0000] [0000****]

254−−−→ [0000**00] [0000****]
254−−−→ [000000**]

5 → 1 None.

1 → 6 [000*0000]
2−→ [******00] [00000*00]

2−→ [***0***0] [000000*0]
2−→ [*****0*0]

2 → 5

[*000000*]
252−−−→ [***0*00*] [*000000*]

254−−−→ [*00*0***] [0*0000*0]
254−−−→ [*0**0**0]

[0*0000*0]
254−−−→ [0**0**0*] [00*00*00]

254−−−→ [*00****0] [00*00*00]
254−−−→ [0****00*]

[000**000]
254−−−→ [**0*0**0] [000**000]

254−−−→ [0**0*0**] [000*0*00]
2−→ [****0*00]

[000*0*00]
254−−−→ [**0**0*0] [000*0*00]

2−→ [*0*0***0] [000*00*0]
254−−−→ [***00**0]

[000*00*0]
2−→ [**0***00] [000*00*0]

2−→ [*0***0*0] [000*000*]
252−−−→ [***0*0*0]

[000*000*]
252−−−→ [**0*0*0*] [00000**0]

2−→ [****00*0] [00000**0]
2−→ [**00***0]

[00000**0]
254−−−→ [*0****00] [00000*0*]

252−−−→ [*****000] [00000*0*]
252−−−→ [*000****]

[000000**]
252−−−→ [***0**00] [000000**]

252−−−→ [*0**00**]

Table E.2: List of possible succession of patterns on the linear layer of SAFER (contin-
ued).

– 220 –



Appendix E Complementary Informations on SAFER

3 → 4

[***00000]
255−−−→ [**0000**] [**0*0000]

254−−−→ [**00**00] [**0*0000]
254−−−→ [00****00]

[**00*000]
255−−−→ [*00**00*] [**000*00]

254−−−→ [**00**00] [**000*00]
254−−−→ [0**00**0]

[**0000*0]
1−→ [*00*00**] [**00000*]

254−−−→ [**00**00] [**00000*]
2−→ [0**0**00]

[*0**0000]
254−−−→ [****0000] [*0**0000]

254−−−→ [00****00] [*0*0*000]
255−−−→ [*0*00*0*]

[*0*00*00]
1−→ [*0000***] [*0*000*0]

254−−−→ [****0000] [*0*000*0]
254−−−→ [0*0**0*0]

[*0*0000*]
254−−−→ [****0000] [*0*0000*]

2−→ [0****000] [*00**000]
1−→ [*00*0*0*]

[*00*000*]
254−−−→ [**0000**] [*000**00]

254−−−→ [*0*0*0*0] [*000**00]
254−−−→ [0**00**0]

[*000*0*0]
254−−−→ [*0*0*0*0] [*000*0*0]

254−−−→ [0*0**0*0] [*000*00*]
254−−−→ [*0*0*0*0]

[*000*00*]
2−→ [0**0*0*0] [*0000*0*]

254−−−→ [*00**00*] [*00000**]
254−−−→ [*0*00*0*]

[0***0000]
252−−−→ [****0000] [0***0000]

252−−−→ [**00**00] [0***0000]
252−−−→ [**0000**]

[0***0000]
254−−−→ [00****00] [0**0*000]

1−→ [*00*0**0] [0**00*00]
1−→ [*0**0*00]

[0**000*0]
1−→ [*00***00] [0**0000*]

2−→ [**0*0*00] [0*0**000]
1−→ [*0*00**0]

[0*0*0*00]
254−−−→ [*0*00*0*] [0*0*00*0]

252−−−→ [****0000] [0*0*00*0]
1−→ [*0*0**00]

[0*0*00*0]
2−→ [0**0*0*0] [0*0*000*]

254−−−→ [****0000] [0*0*000*]
2−→ [***00*00]

[0*0*000*]
2−→ [**0**000] [0*0*000*]

252−−−→ [0*0**0*0] [0*00**00]
252−−−→ [**00**00]

[0*00**00]
252−−−→ [*0*0*0*0] [0*00**00]

252−−−→ [*00**00*] [0*00**00]
254−−−→ [0**00**0]

[0*00*0*0]
1−→ [**000**0] [0*00*00*]

2−→ [*000***0] [0*000**0]
1−→ [***00*00]

[0*000**0]
252−−−→ [*0*0*0*0] [0*000**0]

2−→ [0****000] [0*000*0*]
2−→ [**00*0*0]

[0*000*0*]
2−→ [*0*0**00] [0*000*0*]

254−−−→ [*0*0*0*0] [0*000*0*]
252−−−→ [0*0**0*0]

[0*0000**]
4−→ [***0*000] [0*0000**]

248−−−→ [**00**00] [0*0000**]
252−−−→ [*0*00*0*]

[00***000]
1−→ [*00**0*0] [00**0*00]

252−−−→ [**00**00] [00**0*00]
1−→ [*0***000]

[00**0*00]
2−→ [0**0*0*0] [00**00*0]

254−−−→ [*00**00*] [00**000*]
2−→ [***00*00]

[00**000*]
2−→ [**0**000] [00**000*]

254−−−→ [**00**00] [00**000*]
252−−−→ [0**00**0]

[00*0**00]
1−→ [**0*00*0] [00*0*0*0]

252−−−→ [****0000] [00*0*0*0]
252−−−→ [*0*0*0*0]

[00*0*0*0]
252−−−→ [*0*00*0*] [00*0*0*0]

254−−−→ [0*0**0*0] [00*0*00*]
2−→ [*0**00*0]

[00*00**0]
1−→ [**0**000] [00*00**0]

252−−−→ [*0*0*0*0] [00*00**0]
2−→ [0**0**00]

[00*00*0*]
248−−−→ [****0000] [00*00*0*]

4−→ [***0*000] [00*00*0*]
252−−−→ [*00**00*]

[00*000**]
2−→ [***000*0] [00*000**]

2−→ [*0***000] [00*000**]
254−−−→ [*0*0*0*0]

[00*000**]
252−−−→ [0**00**0] [000***00]

1−→ [***000*0] [000***00]
252−−−→ [**00**00]

[000***00]
2−→ [0****000] [000**0*0]

252−−−→ [****0000] [000**0*0]
1−→ [**00*0*0]

[000**0*0]
2−→ [0**0**00] [000**00*]

4−→ [***0*000] [000**00*]
252−−−→ [**0000**]

[000**00*]
248−−−→ [*0*0*0*0] [000*0**0]

9−→ [***0*000] [000*0**0]
2−→ [**0*0*00]

[000*0**0]
2−→ [*0**00*0] [000*0**0]

2−→ [*000***0] [000*0*0*]
252−−−→ [****0000]

[000*0*0*]
4−→ [***00*00] [000*0*0*]

4−→ [*0*0**00] [000*0*0*]
252−−−→ [*0*0*0*0]

[000*0*0*]
248−−−→ [*0*00*0*] [000*0*0*]

2−→ [0*0***00] [000*0*0*]
254−−−→ [0*0**0*0]

[000*0*0*]
2−→ [0*00***0] [000*00**]

4−→ [**0**000] [000*00**]
252−−−→ [**00**00]

[000*00**]
4−→ [*0***000] [000*00**]

252−−−→ [*0*0*0*0] [000*00**]
248−−−→ [*00**00*]

[000*00**]
2−→ [0***0*00] [000*00**]

2−→ [0***00*0] [000*00**]
254−−−→ [0**00**0]

[0000***0]
254−−−→ [**0000**] [0000**0*]

254−−−→ [**00**00] [0000**0*]
2−→ [**00*0*0]

[0000**0*]
2−→ [*0*0**00] [0000**0*]

252−−−→ [00****00] [0000*0**]
254−−−→ [****0000]

[0000*0**]
2−→ [***000*0] [0000*0**]

2−→ [*0***000] [0000*0**]
252−−−→ [00****00]

[00000***]
252−−−→ [****0000] [00000***]

4−→ [***000*0] [00000***]
252−−−→ [**00**00]

[00000***]
4−→ [**00*0*0] [00000***]

248−−−→ [**0000**] [00000***]
254−−−→ [00****00]

[00000***]
2−→ [00***0*0] [00000***]

2−→ [00*0***0]

Table E.3: List of possible succession of patterns on the linear layer of SAFER (contin-
ued).
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4 → 3

[***0000*]
1−→ [0*0000**] [**00*00*]

1−→ [000**00*] [**0000**]
248−−−→ [**00*000]

[**0000**]
252−−−→ [*0*00*00] [**0000**]

254−−−→ [*0*0000*] [**0000**]
254−−−→ [0*00**00]

[**0000**]
252−−−→ [00**00*0] [**0000**]

255−−−→ [000*00**] [*0*0*00*]
1−→ [00*00*0*]

[*0*00*0*]
248−−−→ [***00000] [*0*00*0*]

252−−−→ [*00**000] [*0*00*0*]
254−−−→ [*000*00*]

[*0*00*0*]
254−−−→ [0***0000] [*0*00*0*]

252−−−→ [0000***0] [*0*00*0*]
255−−−→ [00000***]

[*00**00*]
252−−−→ [**0000*0] [*00**00*]

254−−−→ [**00000*] [*00**00*]
248−−−→ [*0*0*000]

[*00**00*]
252−−−→ [0*0*0*00] [*00**00*]

254−−−→ [00*0*0*0] [*00**00*]
255−−−→ [000*0*0*]

[0***0*00]
2−→ [**00*000] [0***00*0]

2−→ [***00000] [0***000*]
2−→ [*00*0*00]

[0***000*]
2−→ [0**0*000] [0**0*00*]

1−→ [000*0**0] [0**00**0]
254−−−→ [*0*0*000]

[0**00**0]
252−−−→ [*0*000*0] [0**00**0]

252−−−→ [*000*0*0] [0**00**0]
254−−−→ [0*0*0*00]

[0**00**0]
254−−−→ [0*0*000*] [0**00**0]

254−−−→ [0*000*0*] [0**00*0*]
1−→ [00**0*00]

[0**000**]
1−→ [000***00] [0*0***00]

2−→ [**00*000] [0*0**0*0]
254−−−→ [***00000]

[0*0**0*0]
252−−−→ [**0*0000] [0*0**0*0]

252−−−→ [*0**0000] [0*0**0*0]
254−−−→ [0000***0]

[0*0**0*0]
254−−−→ [0000**0*] [0*0**0*0]

254−−−→ [0000*0**] [0*0**00*]
1−→ [00*00**0]

[0*0*0**0]
2−→ [*0000*0*] [0*0*0**0]

2−→ [0**000*0] [0*0*0**0]
2−→ [00***000]

[0*0*0*0*]
252−−−→ [***00000] [0*0*0*0*]

254−−−→ [**0*0000] [0*0*0*0*]
252−−−→ [*0*0*000]

[0*0*0*0*]
248−−−→ [*0*00*00] [0*0*0*0*]

254−−−→ [*000*0*0] [0*0*0*0*]
254−−−→ [*0000*0*]

[0*0*0*0*]
252−−−→ [0*0**000] [0*0*0*0*]

252−−−→ [0*0*0*00] [0*0*0*0*]
252−−−→ [0*00*0*0]

[0*0*0*0*]
254−−−→ [0*000*0*] [0*0*0*0*]

252−−−→ [0000***0] [0*0*0*0*]
254−−−→ [0000**0*]

[0*0*00**]
2−→ [**0*0000] [0*0*00**]

4−→ [**00*000] [0*0*00**]
2−→ [**000*00]

[0*0*00**]
1−→ [00*0**00] [0*00***0]

2−→ [*0*0*000] [0*00**0*]
2−→ [*0000**0]

[0*00**0*]
2−→ [0**0*000] [0*00*0**]

1−→ [0*000**0] [0*000***]
4−→ [**00*000]

[0*000***]
2−→ [*000**00] [0*000***]

2−→ [*000*0*0] [0*000***]
1−→ [0**00*00]

[00****00]
254−−−→ [**00*000] [00****00]

252−−−→ [**000*00] [00****00]
252−−−→ [*000**00]

[00****00]
254−−−→ [00**00*0] [00****00]

254−−−→ [00**000*] [00****00]
254−−−→ [00*000**]

[00***0*0]
2−→ [***00000] [00***00*]

1−→ [000**0*0] [00**0**0]
2−→ [*00*000*]

[00**0**0]
2−→ [0*00*0*0] [00**0**0]

2−→ [00*0**00] [00**0*0*]
4−→ [***00000]

[00**0*0*]
2−→ [**0*0000] [00**0*0*]

2−→ [**000*00] [00**0*0*]
1−→ [00***000]

[00**00**]
252−−−→ [**00*000] [00**00**]

254−−−→ [**000*00] [00**00**]
252−−−→ [*0*0*000]

[00**00**]
254−−−→ [*0*000*0] [00**00**]

248−−−→ [*00**000] [00**00**]
254−−−→ [*00*000*]

[00**00**]
252−−−→ [0**00*00] [00**00**]

252−−−→ [0**000*0] [00**00**]
252−−−→ [0*0*0*00]

[00**00**]
254−−−→ [0*0*000*] [00**00**]

252−−−→ [00**00*0] [00**00**]
254−−−→ [00**000*]

[00*0***0]
2−→ [*0*0*000] [00*0**0*]

1−→ [0*0*00*0] [00*0*0**]
2−→ [*00*00*0]

[00*0*0**]
2−→ [0**0*000] [00*00***]

4−→ [***00000] [00*00***]
2−→ [*0**0000]

[00*00***]
2−→ [*0*000*0] [00*00***]

1−→ [0*0**000] [000****0]
2−→ [*00000**]

[000****0]
2−→ [0**00*00] [000****0]

2−→ [0*0**000] [000***0*]
4−→ [*0*0*000]

[000***0*]
2−→ [*000**00] [000***0*]

2−→ [*000*0*0] [000***0*]
1−→ [0**000*0]

[000**0**]
2−→ [*0**0000] [000**0**]

4−→ [*0*0*000] [000**0**]
2−→ [*0*000*0]

[000**0**]
1−→ [0*00*0*0] [000*0***]

4−→ [**0000*0] [000*0***]
4−→ [*0*00*00]

[000*0***]
4−→ [*00**000] [000*0***]

9−→ [0**0*000] [0000****]
252−−−→ [***00000]

[0000****]
252−−−→ [**00*000] [0000****]

248−−−→ [**0000*0] [0000****]
254−−−→ [*0**0000]

[0000****]
254−−−→ [*000**00] [0000****]

254−−−→ [*00000**] [0000****]
252−−−→ [00***000]

[0000****]
252−−−→ [00**00*0] [0000****]

252−−−→ [00*0**00] [0000****]
254−−−→ [00*000**]

[0000****]
252−−−→ [0000***0] [0000****]

254−−−→ [0000*0**]

Table E.4: List of possible succession of patterns on the linear layer of SAFER (contin-
ued).
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5 → 2

[****000*]
252−−−→ [**000000] [***0*00*]

254−−−→ [*000000*] [**0*0**0]
254−−−→ [00*00*00]

[**00**0*]
252−−−→ [*000*000] [*0**0**0]

254−−−→ [000**000] [*0*0*0**]
252−−−→ [*0*00000]

[*00****0]
254−−−→ [0*0000*0] [*00*0***]

252−−−→ [*000000*] [0****00*]
254−−−→ [0*0000*0]

[0***0*0*]
2−→ [0**00000] [0***00**]

2−→ [0*00*000] [0**0**0*]
254−−−→ [000**000]

[0**0*0**]
254−−−→ [00*00*00] [0**00***]

254−−−→ [00*0*000] [0*0***0*]
2−→ [00*0*000]

[0*0**0**]
254−−−→ [0**00000] [0*0*0***]

252−−−→ [*0*00000] [0*00****]
2−→ [0*00*000]

[00****0*]
254−−−→ [0*00*000] [00***0**]

2−→ [00*0*000] [00**0***]
252−−−→ [*000*000]

[00*0****]
2−→ [0**00000] [000*****]

252−−−→ [**000000]

6 → 1 [0***0***]
2−→ [0*000000] [0*0*****]

2−→ [0000*000] [00******]
2−→ [00*00000]

6 → 2

[******00]
254−−−→ [*0000*00] [******00]

255−−−→ [00*0000*] [*****0*0]
254−−−→ [*00*0000]

[*****0*0]
255−−−→ [0000*00*] [****0*0*]

252−−−→ [0**00000] [****0*0*]
254−−−→ [0000**00]

[****0*0*]
254−−−→ [00000**0] [****00**]

252−−−→ [0*00*000] [****00**]
254−−−→ [00**0000]

[****00**]
254−−−→ [000*00*0] [***0***0]

254−−−→ [*00000*0] [***0***0]
255−−−→ [0*00000*]

[**0***0*]
254−−−→ [0*000*00] [**0***0*]

252−−−→ [00*0*000] [**0***0*]
254−−−→ [000*0*00]

[**0*0***]
252−−−→ [*0000*00] [**0*0***]

254−−−→ [00*00*00] [**00****]
252−−−→ [0*00*000]

[**00****]
254−−−→ [00*000*0] [**00****]

254−−−→ [000*00*0] [*0***0**]
254−−−→ [0*0*0000]

[*0***0**]
252−−−→ [00*0*000] [*0***0**]

254−−−→ [000*0*00] [*0**0***]
252−−−→ [*00*0000]

[*0**0***]
254−−−→ [000**000] [*0*0****]

252−−−→ [0**00000] [*0*0****]
254−−−→ [0000*0*0]

[*0*0****]
254−−−→ [00000**0] [*00*****]

252−−−→ [*00000*0] [*00*****]
254−−−→ [0*0000*0]

[0***0***]
2−→ [**000000] [0***0***]

252−−−→ [*00000*0] [0***0***]
252−−−→ [0*0*0000]

[0***0***]
252−−−→ [0*000*00] [0***0***]

252−−−→ [0*00000*] [0***0***]
254−−−→ [000*0*00]

[0*0*****]
252−−−→ [*00*0000] [0*0*****]

2−→ [*000*000] [0*0*****]
252−−−→ [0000**00]

[0*0*****]
252−−−→ [0000*0*0] [0*0*****]

252−−−→ [0000*00*] [0*0*****]
254−−−→ [00000**0]

[00******]
2−→ [*0*00000] [00******]

252−−−→ [*0000*00] [00******]
252−−−→ [00**0000]

[00******]
252−−−→ [00*000*0] [00******]

252−−−→ [00*0000*] [00******]
254−−−→ [000*00*0]

Table E.5: List of possible succession of patterns on the linear layer of SAFER (contin-
ued).
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5.2 Sequences of Three Weights

1 → 1 → 1 ∅ 1 → 1 → 2 ∅ 1 → 1 → 3 ∅ 1 → 1 → 4 ∅ 1 → 1 → 5 ∅ 1 → 1 → 6 ∅
1 → 2 → 1 ∅ 1 → 2 → 2 ∅ 1 → 2 → 3 ∅ 1 → 2 → 4 X 1 → 2 → 5 ∅ 1 → 2 → 6
1 → 3 → 1 ∅ 1 → 3 → 2 ∅ 1 → 3 → 3 ∅ 1 → 3 → 4 ∅ 1 → 3 → 5 ∅ 1 → 3 → 6 ∅
1 → 4 → 1 ∅ 1 → 4 → 2 X 1 → 4 → 3 ∅ 1 → 4 → 4 1 → 4 → 5 1 → 4 → 6
1 → 5 → 1 ∅ 1 → 5 → 2 ∅ 1 → 5 → 3 ∅ 1 → 5 → 4 ∅ 1 → 5 → 5 ∅ 1 → 5 → 6 ∅
1 → 6 → 1 ∅ 1 → 6 → 2 1 → 6 → 3 1 → 6 → 4 1 → 6 → 5 1 → 6 → 6
2 → 1 → 1 ∅ 2 → 1 → 2 ∅ 2 → 1 → 3 ∅ 2 → 1 → 4 0 2 → 1 → 5 ∅ 2 → 1 → 6 ∅
2 → 2 → 1 ∅ 2 → 2 → 2 0 2 → 2 → 3 ∅ 2 → 2 → 4 X 2 → 2 → 5 ∅ 2 → 2 → 6
2 → 3 → 1 ∅ 2 → 3 → 2 0 2 → 3 → 3 ∅ 2 → 3 → 4 X 2 → 3 → 5 2 → 3 → 6
2 → 4 → 1 X 2 → 4 → 2 X 2 → 4 → 3 2 → 4 → 4 2 → 4 → 5 2 → 4 → 6
2 → 5 → 1 ∅ 2 → 5 → 2 2 → 5 → 3 2 → 5 → 4 2 → 5 → 5 2 → 5 → 6
2 → 6 → 1 2 → 6 → 2 2 → 6 → 3 2 → 6 → 4 2 → 6 → 5 2 → 6 → 6
3 → 1 → 1 ∅ 3 → 1 → 2 ∅ 3 → 1 → 3 ∅ 3 → 1 → 4 ∅ 3 → 1 → 5 ∅ 3 → 1 → 6 ∅
3 → 2 → 1 ∅ 3 → 2 → 2 ∅ 3 → 2 → 3 ∅ 3 → 2 → 4 3 → 2 → 5 ∅ 3 → 2 → 6
3 → 3 → 1 ∅ 3 → 3 → 2 ∅ 3 → 3 → 3 ∅ 3 → 3 → 4 3 → 3 → 5 3 → 3 → 6
3 → 4 → 1 ∅ 3 → 4 → 2 3 → 4 → 3 3 → 4 → 4 3 → 4 → 5 3 → 4 → 6
3 → 5 → 1 ∅ 3 → 5 → 2 3 → 5 → 3 3 → 5 → 4 3 → 5 → 5 3 → 5 → 6
3 → 6 → 1 3 → 6 → 2 3 → 6 → 3 3 → 6 → 4 3 → 6 → 5 3 → 6 → 6
4 → 1 → 1 ∅ 4 → 1 → 2 0 4 → 1 → 3 ∅ 4 → 1 → 4 ∅ 4 → 1 → 5 ∅ 4 → 1 → 6
4 → 2 → 1 X 4 → 2 → 2 X 4 → 2 → 3 4 → 2 → 4 X 4 → 2 → 5 4 → 2 → 6
4 → 3 → 1 ∅ 4 → 3 → 2 4 → 3 → 3 4 → 3 → 4 4 → 3 → 5 4 → 3 → 6
4 → 4 → 1 4 → 4 → 2 4 → 4 → 3 4 → 4 → 4 4 → 4 → 5 4 → 4 → 6
4 → 5 → 1 ∅ 4 → 5 → 2 4 → 5 → 3 4 → 5 → 4 4 → 5 → 5 4 → 5 → 6
4 → 6 → 1 4 → 6 → 2 4 → 6 → 3 4 → 6 → 4 4 → 6 → 5 4 → 6 → 6
5 → 1 → 1 ∅ 5 → 1 → 2 ∅ 5 → 1 → 3 ∅ 5 → 1 → 4 ∅ 5 → 1 → 5 ∅ 5 → 1 → 6 ∅
5 → 2 → 1 ∅ 5 → 2 → 2 ∅ 5 → 2 → 3 ∅ 5 → 2 → 4 5 → 2 → 5 5 → 2 → 6
5 → 3 → 1 ∅ 5 → 3 → 2 5 → 3 → 3 5 → 3 → 4 5 → 3 → 5 5 → 3 → 6
5 → 4 → 1 5 → 4 → 2 5 → 4 → 3 5 → 4 → 4 5 → 4 → 5 5 → 4 → 6
5 → 5 → 1 ∅ 5 → 5 → 2 5 → 5 → 3 5 → 5 → 4 5 → 5 → 5 5 → 5 → 6
5 → 6 → 1 5 → 6 → 2 5 → 6 → 3 5 → 6 → 4 5 → 6 → 5 5 → 6 → 6
6 → 1 → 1 ∅ 6 → 1 → 2 ∅ 6 → 1 → 3 ∅ 6 → 1 → 4 6 → 1 → 5 ∅ 6 → 1 → 6 ∅
6 → 2 → 1 6 → 2 → 2 6 → 2 → 3 6 → 2 → 4 6 → 2 → 5 6 → 2 → 6
6 → 3 → 1 ∅ 6 → 3 → 2 6 → 3 → 3 6 → 3 → 4 6 → 3 → 5 6 → 3 → 6
6 → 4 → 1 6 → 4 → 2 6 → 4 → 3 6 → 4 → 4 6 → 4 → 5 6 → 4 → 6
6 → 5 → 1 ∅ 6 → 5 → 2 6 → 5 → 3 6 → 5 → 4 6 → 5 → 5 6 → 5 → 6
6 → 6 → 1 6 → 6 → 2 6 → 6 → 3 6 → 6 → 4 6 → 6 → 5 6 → 6 → 6

Table E.6: List of all possible succession of weights for patterns on two rounds.

5.3 Complexities of the Attacks against 3, 4, and 5 Rounds

Reduced hull min
a0,a3

8 ln 2

(d− 1)ELPH(3)
(a0, a3)

2np 2nk Complexity

[000*0000]
1−→ [**000000]

255−−−→ [00**00**]
1−→ [000*0000] 239.18 216 28/216 239.18/239.18

[00000*00]
1−→ [*000*000]

255−−−→ [0*0*0*0*]
1−→ [00000*00] 239.07 216 28/216 239.07/239.07

[000000*0]
1−→ [*0*00000]

255−−−→ [0000****]
1−→ [000000*0] 239.18 216 28/216 239.18/239.18

[0*000000]
1−→ [**00**00]

255−−−→ [000*000*]
1−→ [0*000000] 238.75 216 28/216 238.75/238.75

[0000*000]
1−→ [*0*0*0*0]

255−−−→ [00000*0*]
1−→ [0000*000] 239.18 216 28/216 239.18/239.18

[00*00000]
1−→ [****0000]

255−−−→ [000000**]
1−→ [00*00000] 239.18 216 28/216 239.18/239.18

Table E.7: Reduced hull on three diffusion layers and attack complexities against three
rounds of SAFER K/SK.
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Reduced hull min 8 ln 2
(d−1)ELP 2np 2nk Complexity

[000*0000]
1−→ [**000000]

254−−−→ [**00**00]
255−−−→ [000*000*]

1−→ [0*000000] 249.22 216 216/224 249.22/249.22

[000*0000]
1−→ [**000000]

255−−−→ [00**00**]
254−−−→ [000*000*]

1−→ [0*000000] 0

[00000*00]
1−→ [*000*000]

254−−−→ [*0*0*0*0]
255−−−→ [00000*0*]

1−→ [0000*000] 249.82 216 28/28 249.82/249.82

[00000*00]
1−→ [*000*000]

255−−−→ [0*0*0*0*]
254−−−→ [00000*0*]

1−→ [0000*000] 0

[000000*0]
1−→ [*0*00000]

254−−−→ [****0000]
255−−−→ [000000**]

1−→ [00*00000] 250.56 216 224/224 250.56/250.56

[000000*0]
1−→ [*0*00000]

255−−−→ [0000****]
254−−−→ [000000**]

1−→ [00*00000] 0

[0*0*0000]
1−→ [0000**00]

254−−−→ [**00**00]
255−−−→ [000*000*]

1−→ [0*000000] 249.18 224 216/232 249.18/256

[0*0*0000]
1−→ [0000**00]

254−−−→ [00**00**]
254−−−→ [000*000*]

1−→ [0*000000] 0

[0*000*00]
1−→ [0*000*00]

254−−−→ [0*0*0*0*]
254−−−→ [00000*0*]

1−→ [0000*000] 0

[00**0000]
1−→ [00**0000]

254−−−→ [00**00**]
254−−−→ [000*000*]

1−→ [0*000000] 0

[00*000*0]
1−→ [0*0*0000]

254−−−→ [0000****]
254−−−→ [000000**]

1−→ [00*00000] 0

[0000**00]
1−→ [00*000*0]

254−−−→ [0*0*0*0*]
254−−−→ [00000*0*]

1−→ [0000*000] 0

[0000*0*0]
1−→ [0000*0*0]

254−−−→ [****0000]
255−−−→ [000000**]

1−→ [00*00000] 250.82 224 224/232 250.82/256

[0000*0*0]
1−→ [0000*0*0]

254−−−→ [0000****]
254−−−→ [000000**]

1−→ [00*00000] 0

[000*0000]
1−→ [**000000]

254−−−→ [**00**00]
254−−−→ [0*000*00]

1−→ [0*000*00] 249.39 224 224/232 249.39/256

[000*0000]
1−→ [**000000]

254−−−→ [**00**00]
254−−−→ [00*000*0]

1−→ [0*0*0000] 249.78 224 216/224 249.78/249.78

[000*0000]
1−→ [**000000]

255−−−→ [00**00**]
254−−−→ [0*000*00]

1−→ [0*000*00] 249.82 224 224/232 249.82/254

[000*0000]
1−→ [**000000]

255−−−→ [00**00**]
254−−−→ [00*000*0]

1−→ [0*0*0000] 250.17 224 216/224 250.17/250.17

[00000*00]
1−→ [*000*000]

254−−−→ [*0*0*0*0]
254−−−→ [0*0*0000]

1−→ [0000**00] 249.82 224 28/216 249.82/249.82

[00000*00]
1−→ [*000*000]

254−−−→ [*0*0*0*0]
254−−−→ [0000*0*0]

1−→ [0000*0*0] 250.08 224 216/28 250.08/250.08

[00000*00]
1−→ [*000*000]

255−−−→ [0*0*0*0*]
254−−−→ [0*0*0000]

1−→ [0000**00] 0

[00000*00]
1−→ [*000*000]

255−−−→ [0*0*0*0*]
254−−−→ [0000*0*0]

1−→ [0000*0*0] 249.74 224 216/28 249.74/249.74

[000000*0]
1−→ [*0*00000]

254−−−→ [****0000]
254−−−→ [00**0000]

1−→ [00**0000] 250.83 224 216/216 250.83/250.83

[000000*0]
1−→ [*0*00000]

254−−−→ [****0000]
254−−−→ [0000**00]

1−→ [00*000*0] 250.83 224 224/224 250.83/250.83

[000000*0]
1−→ [*0*00000]

255−−−→ [0000****]
254−−−→ [00**0000]

1−→ [00**0000] 0

[000000*0]
1−→ [*0*00000]

255−−−→ [0000****]
254−−−→ [0000**00]

1−→ [00*000*0] 250.82 224 224/224 250.82/250.82

Table E.8: Reduced hull on four diffusion layers and attack complexities against four
rounds of SAFER K/SK.

Reduced hull min 8 ln 2
(d−1)ELP 2np 2nk

[000*0000]
1−→ [**000000]

254−−−→ [**00**00]
254−−−→ [0*000*00]

1−→ [0*000*00]
254−−−→ [*0*0*0*0] 0

[000*0000]
1−→ [**000000]

254−−−→ [**00**00]
254−−−→ [0*000*00]

1−→ [0*000*00]
254−−−→ [0*0*0*0*] 253.21 240 216/224

[000*0000]
1−→ [**000000]

255−−−→ [00**00**]
254−−−→ [0*000*00]

1−→ [0*000*00]
254−−−→ [*0*0*0*0] 0

[000*0000]
1−→ [**000000]

255−−−→ [00**00**]
254−−−→ [0*000*00]

1−→ [0*000*00]
254−−−→ [0*0*0*0*] 253.65 240 216/224

[000*0000]
1−→ [**000000]

254−−−→ [**00**00]
254−−−→ [00*000*0]

1−→ [0*0*0000]
254−−−→ [****0000] 0

[000*0000]
1−→ [**000000]

254−−−→ [**00**00]
254−−−→ [00*000*0]

1−→ [0*0*0000]
254−−−→ [0000****] 254.93 240 224/224

[000*0000]
1−→ [**000000]

255−−−→ [00**00**]
254−−−→ [00*000*0]

1−→ [0*0*0000]
254−−−→ [****0000] 0

[000*0000]
1−→ [**000000]

255−−−→ [00**00**]
254−−−→ [00*000*0]

1−→ [0*0*0000]
254−−−→ [0000****] 255.32 240 224/224

[00000*00]
1−→ [*000*000]

255−−−→ [0*0*0*0*]
254−−−→ [0*0*0000]

1−→ [0000**00]
254−−−→ [**00**00] 0

[00000*00]
1−→ [*000*000]

255−−−→ [0*0*0*0*]
254−−−→ [0*0*0000]

1−→ [0000**00]
254−−−→ [00**00**] 0

[00000*00]
1−→ [*000*000]

254−−−→ [*0*0*0*0]
254−−−→ [0*0*0000]

1−→ [0000**00]
254−−−→ [**00**00] 254.71 240 224/224

[00000*00]
1−→ [*000*000]

254−−−→ [*0*0*0*0]
254−−−→ [0*0*0000]

1−→ [0000**00]
254−−−→ [00**00**] 254.97 240 224/232

[00000*00]
1−→ [*000*000]

254−−−→ [*0*0*0*0]
254−−−→ [0000*0*0]

1−→ [0000*0*0]
254−−−→ [****0000] 254.97 240 224/232

[00000*00]
1−→ [*000*000]

254−−−→ [*0*0*0*0]
254−−−→ [0000*0*0]

1−→ [0000*0*0]
254−−−→ [0000****] 255.23 240 224/224

[00000*00]
1−→ [*000*000]

255−−−→ [0*0*0*0*]
254−−−→ [0000*0*0]

1−→ [0000*0*0]
254−−−→ [****0000] 254.63 240 224/232

[00000*00]
1−→ [*000*000]

255−−−→ [0*0*0*0*]
254−−−→ [0000*0*0]

1−→ [0000*0*0]
254−−−→ [0000****] 254.89 240 224/224

[000000*0]
1−→ [*0*00000]

254−−−→ [****0000]
254−−−→ [00**0000]

1−→ [00**0000]
254−−−→ [**00**00] 0

[000000*0]
1−→ [*0*00000]

254−−−→ [****0000]
254−−−→ [00**0000]

1−→ [00**0000]
254−−−→ [00**00**] 255.98 240 224/232

[000000*0]
1−→ [*0*00000]

255−−−→ [0000****]
254−−−→ [00**0000]

1−→ [00**0000]
254−−−→ [**00**00] 0

[000000*0]
1−→ [*0*00000]

255−−−→ [0000****]
254−−−→ [00**0000]

1−→ [00**0000]
254−−−→ [00**00**] 0

[000000*0]
1−→ [*0*00000]

254−−−→ [****0000]
254−−−→ [0000**00]

1−→ [00*000*0]
254−−−→ [*0*0*0*0] 0

[000000*0]
1−→ [*0*00000]

254−−−→ [****0000]
254−−−→ [0000**00]

1−→ [00*000*0]
254−−−→ [0*0*0*0*] 254.65 240 224/232

[000000*0]
1−→ [*0*00000]

255−−−→ [0000****]
254−−−→ [0000**00]

1−→ [00*000*0]
254−−−→ [*0*0*0*0] 0

[000000*0]
1−→ [*0*00000]

255−−−→ [0000****]
254−−−→ [0000**00]

1−→ [00*000*0]
254−−−→ [0*0*0*0*] 254.65 240 224/232

Table E.9: Reduced hull on five diffusion layers and attack complexities against five
rounds of SAFER K/SK.
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[13] Côme Berbain, Olivier Billet, and Henri Gilbert. Efficient implementations of
multivariate quadratic systems. In Biham and Youssef [25], pages 174–187.
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de l’Ecole Normale Superieure, 45 rue d’Ulm, 75005 Paris.

[150] Serge Vaudenay. On the need for multipermutations: Cryptanalysis of MD4 and
SAFER. In Preneel [131], pages 286–297.

[151] Serge Vaudenay. An experiment on DES statistical cryptanalysis. In 3rd ACM
Conference on Computer and Communications Security, pages 139–147. ACM
Press, 1996.

– 238 –



Bibliography

[152] Serge Vaudenay. Provable security for block ciphers by decorrelation. In
STACS’98, volume 1373 of LNCS, pages 249–275. Springer-Verlag, 1998.

[153] Serge Vaudenay. On the Lai-Massey scheme. In Kwok-Yan Lam, Eiji Okamoto,
and Chaoping Xing, editors, Advances in Cryptology - ASIACRYPT ’99, Interna-
tional Conference on the Theory and Applications of Cryptology and Information
Security, Singapore, November 14-18, 1999, Proceedings, volume 1716 of LNCS,
pages 8–19. Springer-Verlag, 1999.

[154] Serge Vaudenay. Resistance against general iterated attacks. In Stern [143], pages
255–271.

[155] Serge Vaudenay. Decorrelation: a theory for block cipher security. Journal of
Cryptology, 16(4):249–286, 2003.

[156] Serge Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006, 25th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume
4004 of LNCS. Springer-Verlag, 2006.

[157] Serge Vaudenay. A Classical Introduction to Cryptography: Applications for
Communications Security. Springer-Verlag, 2006. Website of the book:
http://www.vaudenay.ch/crypto/.

[158] Umesh V. Vazirani and Vijay V. Vazirani. Efficient and secure pseudo-random
number generation. In Blakley and Chaum [28], pages 193–202.

[159] Umesh V. Vazirani and Vijay V. Vazirani. Efficient and secure pseudo-random
number generation (extended abstract). In Proceedings of FOCS’84, pages 458–
463. IEEE, 1985.

[160] Gilbert S. Vernam. Cipher printing telegraph systems for secret wire and radio
telegraphic communications. Journal of the IEEE, 55:109–115, 1926.

[161] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, 2nd edition, 2003. First published 1999.

[162] David Wagner. The boomerang attack. In Knudsen [89], pages 156–170.

[163] David Wagner. Towards a unifying view of block cipher cryptanalysis. In Bimal K.
Roy and Willi Meier, editors, Fast Software Encryption, 11th International Work-
shop, FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017
of LNCS, pages 16–33. Springer-Verlag, 2004.

[164] Hongjun Wu, Feng Bao, Robert H. Deng, and Qin-Zhong Ye. Improved truncated
differential attacks on SAFER. In Kazuo Ohta and Dingyi Pei, editors, Advances
in Cryptology - ASIACRYPT ’98, International Conference on the Theory and
Applications of Cryptology and Information Security, Beijing, China, October

– 239 –



Bibliography

18-22, 1998, Proceedings, volume 1514 of LNCS, pages 133–147. Springer-Verlag,
1998.

[165] Wenling Wu, Wentao Zhang, and Dengguo Feng. Integral cryptanalysis of reduced
FOX block cipher. In Dongho Won and Seungjoo Kim, editors, Information Se-
curity and Cryptology - ICISC 2005, 8th International Conference, Seoul, Korea,
December 1-2, 2005, Revised Selected Papers, volume 3935 of LNCS, pages 229–
241. Springer-Verlag, 2006.

[166] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd Annual Symposium on Foundations of Computer Science, 3-5
November 1982, Chicago, Illinois, USA, pages 80–91, 1982.

[167] Amr M. Youssef and Stafford E. Tavares. Resistance of balanced S-boxes to linear
and differential cryptanalysis. Information Processing Letters, 56:249–252, 1995.

[168] Yuliang Zheng, editor. Advances in Cryptology - ASIACRYPT 2002, 8th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Queenstown, New Zealand, December 1-5, 2002, Proceedings, volume
2501 of LNCS. Springer-Verlag, 2002.

– 240 –



Curriculum Vitæ

Education

EPFL (Ecole Polytechnique Fédérale de Lausanne), LAUSANNE, SWITZERLAND 2003-2008

PhD DEGREE IN CRYPTOGRAPHY

PhD Thesis: Quantitative Security of Block Ciphers: Designs and Cryptanalysis Tools. Degree
expected mid. 2008.
Supervisor: Prof. Serge Vaudenay.
Fellowship from the Swiss National Science Foundation (SNSF).

Lectures attended at EPFL’s Doctoral School:
• Prof. Arikan’s lectures on Quantum Computation and Quantum Information (Grade: 6/6)
• Prof. Shokrollahi’s lectures on Algorithmic Number Theory (Grade: 6/6)
• Prof. Vaudenay’s lectures on Selected Topics in Cryptography (Grade: 6/6)

EPFL, LAUSANNE, SWITZERLAND 1998-2003

MASTER DEGREE IN COMMUNICATIONS SYSTEMS

Master Thesis: A Generalization of Linear Cryptanalysis. (Grade: 6/6)
Semester Project: Factorisation de Grands Nombres à l’Aide de Courbes Elliptiques. (Grade:
6/6)
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