
Distinguishing Distributions Using

Chernoff Information

Thomas Baignères1, Pouyan Sepehrdad2, and Serge Vaudenay2

1 CryptoExperts, Paris, France
2 EPFL, Switzerland

thomas.baigneres@cryptoexperts.com,

{pouyan.sepehrdad,serge.vaudenay}@epfl.ch

Abstract. In this paper, we study the soundness amplification by repetition of cryptographic proto-
cols. As a tool, we use the Chernoff Information. We specify the number of attempts or samples required
to distinguish two distributions efficiently in various protocols. This includes weakly verifiable puzzles
such as CAPTCHA-like challenge-response protocols, interactive arguments in sequential composition
scenario and cryptanalysis of block ciphers. As our main contribution, we revisit computational sound-
ness amplification by sequential repetition in the threshold case, i.e when completeness is not perfect.
Moreover, we outline applications to the Leftover Hash Lemma and iterative attacks on block ciphers.
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1 Introduction

In many occasions in cryptography we encounter the challenge of distinguishing distributions such as pseudo-
random number generators, symmetric key cryptanalysis or challenge-response puzzles. We consider protocols
in which one distribution (null) is usually associated with the probability distribution of an adversary winning
a game. Similarly, the other distribution (alternate) corresponds to the probability of success of a legitimate
party. This concept can be modified depending on the application i.e, the distributions may correspond to
a thoroughly uniform distribution and a biased distribution (such as in block ciphers cryptanalysis). For
instance, challenge-response puzzles are often deployed to distinguish between a real and a fake solver. Dif-
ferentiation is obtained by the probability of them solving a randomly chosen challenge. What we focus on in
this paper is the application of such distinguishers in weakly verifiable puzzle protocols, sequential repetition
of computationally sound protocols and the Leftover Hash lemma.

Initially, we concentrate on interactive protocols, where there always exist a number of false negative and
false positive responses by the verifier. They correspond to the completeness and soundness probability of
the protocol. One might think of a method to reduce the error associated with the relevant distinguisher.
One straightforward strategy to decrease the probability of error in both cases is to provoke the protocol
iteratively and output “accept” if all instances accept (non-threshold case). Assuming the passing probability
of non-authentic (vs. authentic) parties is b (vs. a), one would like to obtain error probability of bq after q
iterations, but it makes the success probability of authentic parties go down to aq, which is often not desirable
in real life applications. To solve this bottleneck, what we investigate in this paper is the general scenario of
threshold repetition, i.e we now accept if the number of accepting repetitions is larger than a given threshold
m. We can find an optimal m in which it makes the error probabilities of the protocol arbitrary close to zero.
This strategy can be deployed in other similar interactive protocols like weakly verifiable puzzle protocols
in which a verifier sends a puzzle to the solver and depends on the solver’s response, he outputs accept or
reject. In one section, we principally study CAPTCHA-like protocols as an example of such puzzles. We offer
q puzzles to the solver and accept if she replies correctly to at least a threshold m of instances.



The problem of soundness amplification and the previous results. In interactive systems, the
soundness probability of the protocol corresponds to upper bounding the probability of success of a malicious
party to win the game. We always assume that the verifier is computationally bounded, but depending on
computational capability of the prover we can define argument or proof systems, where the former corresponds
to polynomial time provers and the latter to computationally unbounded provers (see section 3.1). We refer
to the soundness probability of proof systems as statistical soundness versus the computational soundness in
argument systems. To decrease the soundness error of such protocols, making a problem harder by repetition
can be performed using two distinct approaches, namely sequential and parallel repetition. By sequential
repetition we mean repeating the protocol several times, beginning the next run after the previous one
terminates. Conversely, in the parallel case, all the instances are yielded to the prover at the same time
without waiting for any arbitrary instance to terminate.

Security amplification is a fundamental cryptographic problem and has been studied for a variety of
important cryptographic primitives, such as one way functions [37], collision resistance hash functions [10],
encryption schemes [18] and weakly verifiable puzzles [9, 22, 23], i.e given a construction C for some primitive
P which is “weakly secure”, we can construct a “strongly secure” construction C′ from C as an example
of direct product theorems, i.e solving many instances of a hard problem is harder than solving a single
instance. It is well-known that sequential and parallel repetition of interactive proof systems reduce the error
(statistical soundness) with an exponential rate (see [20]) in the non-threshold case (i.e, when there are no
false rejections). In fact, [15] has given the proof that sequential repetition of computationally sound proof
systems improves their security with an exponential rate in the “non-uniform model” under non-threshold
approach, but it seems there is no explicit proof for the error reduction in the threshold case.

For a long period, it was assumed by the community that there is no distinction between error reduction
of interactive arguments (computational soundness) when the protocol is iterated sequentially or in parallel.
Finally, Bellare et al. [5] disproved this argument by providing a 4-round protocol in which q iterations does
not reduce the computational soundness error probability of the protocol at all. In fact, they showed that
there is no “black box“ error reduction for such protocols when parallel repetition is concerned. On the other
hand, they proved the surprising result that error reduction in parallel case depends fundamentally on the
number rounds of the protocol. They proved that error decreases exponentially fast with the increase in the
number of iterations if the number of rounds is less than 4. The computation complexity of each instance of
their counter-example grows linearly with the number of repetitions and for such protocols the error does not
even decrease for some types of interactive proofs. They constructed an artificial oracle to solve this problem.
To discard the effect of this oracle, using universal arguments of Barak and Goldreich [4], Pietrzak et al. [33]
provided an 8-round protocol in which the q-fold parallel repetition does not decrease the error probability
below some constant for any polynomial q (where the communication complexity does not depend on q).
This result was extended to Arthur-Merlin games by Pass et al. [32] showing that parallel repetition reduces
the soundness-error at an optimal rate (up to a negligible factor) in constant-round public coin arguments
and constant-round public-coin proofs of knowledge. As an extension, multi-prover systems were examined
in multiple articles such as [19, 34].

In all these cases, we assume that the secret is not given to the verifier, otherwise there exist examples
that even sequential repetition does not reduces the error at all (see [5, 33]). Recently, Dodis et al. [17] have
generalized the previous results to the case of interactive cryptographic primitives in the sense that the
adversary can query the oracle multiple times before solving the main challenge. They studied the security
amplification of MACs, SIGs and PRFs showing how to convert a corresponding weak primitive into a strong
primitive. In fact, they proved a direct product theorem and even a Chernoff type theorem for MACs / SIGs
with imperfect completeness and a regular XOR lemma for PRFs by introducing Dynamic Weakly Verifiable
Puzzles (DWVPs).
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Weakly verifiable puzzles. As another application, we study weakly verifiable puzzles. These are inter-
active protocols in which the verifier sends a puzzle to the solver and outputs 0 or 1 depending the solver’s
response. They are weakly verifiable in the sense that only the puzzle generator can check the correctness
of the responses, either because the challenge may have multiple correct responses and the verifier seeks
a particular one of those or because the solver is computationally constrained, for instance in CAPTCHA
puzzles [1]. CAPTCHA is a fuzzy challenge response protocol for distinguishing humans from programs
(bots) mostly based on a distorted text with extraneous lines [1]. The current vision protocols are not able
to pass CAPTCHA efficiently and the probability that a human can pass is much higher than the programs.
This is thankful of the non-efficiency of the current image recognition systems not being able to identify
distorted texts efficiently, but their passing success rate is still non-negligible. Moreover, many humans (in-
cluding us) fail a non-negligible fraction of puzzles. This implies that it might not be desirable to consider
the non-threshold scenario for such protocols. Previously, Canetti et al. [9] proved that the parallel repeti-
tion of weakly verifiable puzzle protocols decreases the error with an exponential rate. In fact, they found a
tighter bound than [5]. Their proof is restricted to the non-threshold case which might not be appropriate
for CAPTCHAs since their completeness are not perfect. This result can be extended to parallel repetition
of interactive arguments. As the pioneers in threshold parallel repetition of such protocols, Impagliazzo et al.
[22, 23] have introduced two distinct bounds on the maximum success probability of a malicious algorithm
for the parallel repetition of such protocols in the threshold case. The authors observed that the authentic
party is on average expect to solve a.q puzzles and if a Chernoff like bound holds, then the probability of fake
parties solving a.q puzzles may drop exponentially and they gave an exponential bound. The complication in
reducing a single puzzle instance to a direct product puzzle instance originates from the fact that the given
single puzzle instance is required to be incorporated in all simulated direct product puzzle instances and
thus they are not independent. However, the bound they obtained has a weak constant in the exponent and
although their results apply to the parallel composition scenario, they provided values which are irrelevant
in practice, CAPTCHA for instance (see section 3.2). This was noticed by the authors themselves motivat-
ing to find better bounds as an open problem. Jutla [26] deployed a uniformized parallel solver, who first
permutes his given first q-puzzles randomly, solves them as before and permutes the results back. Deploying
this strategy, he improved the aforementioned bound and then he plugged it into ”trust reduction” strategy
in [22] and considered a linearly weighted metric and derived a more optimal bound. In fact, we show by a
concrete example that his bound is still not applicable in practice since it asks for solving a huge number of
CAPTCHAs in parallel.

Our contribution. The fundamental issue in this area is an approximation on the number of iterations
required to effectively tune the probability of false acceptance or false rejection optimally. In fact, we find
the optimal threshold m for the best distinguisher in section 3. We show that soundness amplification in the
threshold case

• works as expected for statistical soundness.
• works with a small gap for computational soundness when the number of repetitions is logarithmic.

We find a practical bound restricted to sequential repetition of such protocols. Notice that our bounds
might not work in the parallel composition scenario but it provides figures which can be deployed in the
practice of sequential repetition. It seems more logical for practical applications like CAPTCHAs (see section
3.2).

We also consider the Leftover-Hash lemma. Let assume we have a secret key K that has t uniform random
bits. If ℓ bits of the key are leaked, but it is not clear which one, the Leftover-Hash Lemma [24] tells us that
we can produce a key of almost m = t− ℓ bits that is ǫ-indistinguishable from uniform distribution over the
key space. We define a distinguisher given n samples in Luby-Rackoff model which distinguishes between
a universal hash function and a uniform distribution. We derive the same bound as in [13] by deploying
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Chernoff Information which turns out to be optimal by introducing the Multi-Session Leftover-Hash Lemma
when more than one such key generations are of interest.

In Appendix, we present iterative attacks on block ciphers with applications in linear and differential
cryptanalysis and show that we can recover the number of plaintext/ciphertext pairs required to obtain a
significant advantage.

Structure of this paper. First, we mention some preliminaries regarding the facts and previous results
on hypothesis testing problem and statistical distinguishers. Then, we model our distinguishing games as
a challenge of distinguishing two random Boolean sources in section 3 when multiple samples are given to
the distinguisher or multiple iterations are of concerned. In section 3.1, we focus on sequential repetition
of interactive arguments in the threshold case and derive better bounds to strengthen them. In section 3.2,
we investigate the sequential repetition of weakly verifiable puzzles. We compare Impagliazzo et al. [22, 23]
bounds and Jutla bound [26] together with the Chernoff-Hoeffding bound of [21] and the asymptotic bound
in [3] in a q-sequential-iteration CAPTCHA-like protocol and conclude that the asymptotic estimation is
the closest one to the concrete value and appears to be more useful in such specific interactive argument
systems. Furthermore, in section 5 we derive a useful bound which we use to investigate the Leftover Hash
Lemma when multi sessions of a universal hash function are of concerned. In Appendix, we revisit iterative
attack on block ciphers and derive the number of samples required to achieve a significant advantage.

2 Preliminaries

Notations. In this paper, we let Z denote a finite set and P0, P1, . . . , Pk be k + 1 probability distributions
over Z. The support of a distribution P over Z is the set supp(P) = {z ∈ Z : P[z] > 0}. The distribution
P is of full-support when supp(P) = Z. When considering the two distributions P0, P1 we will usually
denote Z ′ = supp(P0)∩supp(P1) and have Z = supp(P0)∪supp(P1). The natural and base 2 logarithms will
respectively be denoted by ln and log. The Kullback-Leibler divergence [27] and the Chernoff Information [11]
between P0 and P1 are respectively defined by

D(P0‖P1) =
∑

z∈supp(P0)

P0[z] log
P0[z]

P1[z]
and C(P0, P1) = − inf

0<λ<1
log

∑

z∈Z′

P0[z]1−λP1[z]λ

When supp(P0) * supp(P1) then D(P0‖P1) = +∞. A sequence of q elements z1, . . . , zq ∈ Z and a sequence
of random variables Z1, . . . , Zq ∈ Z are respectively denoted by zq and Zq. Finally, we say that two functions

f and g are asymptotically equivalent when lim
q→∞

1
q ln f(q)

g(q) = 0 or equivalently when f(q) = g(q)eo(q). This is

denoted by f(q)
r

= g(q).

Essential Definitions on Hypothesis Testing. The cryptographic problems we will consider in the
following sections can all be formalized as a hypothesis testing problem in which a distinguisher A tries to
distinguish between the hypotheses

H0 : P = P0 and H1 : P ∈ D = {P1, . . . , Pk}

on the basis of the knowledge of the Pi’s and of q > 0 elements Z1, . . . , Zq ∈ Z sampled according to the
distribution P. It is assumed that one of the hypotheses is true, that the q samples are independent and
identically distributed (iid), that the distinguisher A eventually outputs 0 or 1 to indicate its guess and
that this distinguisher is computationally unbounded (so that we can assume it is deterministic); for this
last reason, A is referred to as a q-limited distinguisher. In fact, we are following Luby-Rackoff model of
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indistinguishability [29] where the only adversarial limitation is the number of queries. In the particular case
where k = 1, we will refer to the previous problem as a simple hypothesis test, whereas when k > 1 we call it
a composite hypothesis test. A q-limited distinguisher A which is given q samples Zq = Z1, . . . , Zq is denoted
as Aq(Z

q). The effectiveness of A is mathematically formulated by its advantage.

Definition 1. The advantage of a q-limited distinguisher Aq between the hypotheses H0 and H1, based on
the q samples Zq = Z1, . . . , Zq, is defined by

AdvAq(H0, H1) = Pr[Aq(Z
q) = 1|H0]− Pr[Aq(Z

q) = 1|H1]

The hypotheses H0 and H1 are (q, ǫ)-indistinguishable if for any q-limited distinguisher Aq we have

|AdvAq(H0, H1)| ≤ ǫ

Existence of an Optimal Distinguisher. Since the samples are assumed to be iid, their particular order
must be irrelevant. What really matters is the number of occurrences of each symbol of Z in the string
Z

q = Z1, . . . , Zq or equivalently the type (or empirical probability distribution) of this sequence, defined by

PZq [z] =
#{i : Zi = z}

q

Consequently, a distinguisher can be thoroughly specified by the set Π of all types for which it will output
1, i.e.,

Aq(Z
q) = 1 ⇔ PZq ∈ Π

The set Π is called the acceptance region of A. Since q is fixed, the number of possible types is finite and thus
we can assume wlog that Π is finite. Consequently, there is also a finite number of potential adversaries so
that there must be at least one which maximizes the advantage. We call them best distinguishers and denote
by BestAdvq(H0, H1) (or simply by BestAdvq) their advantage.

The Optimal Adversary in the Simple Hypothesis Testing Case. We consider the simple case where
A must distinguish between

H0 : P = P0 and H1 : P = P1

In that case, we abusively call A a distinguisher between P0 and P1 and denote its advantage by AdvAq(P0, P1).
The best possible advantage is obtained by likelihood ratio test, where the acceptance region of the distin-
guisher is such that

Aq(Z
q) = 1 ⇔ Pzq|P0

Pzq|P1

≤ 1 (1)

where Pzq |Pi
is the type of the sequence given the distribution Pi has happened. It can be shown [2] that the

distinguisher A⋆ defined by the acceptance region

Π⋆ = {PZq : D(PZq‖P1) ≤ D(PZq‖P0)} (2)

is a best distinguisher.
The following essential theorem allows to relate the advantage of the best distinguisher between P0 and

P1 to the Chernoff Information3 [11].

3 A proof of this result can be found in [14] asymptotically, where it is implicitly assumed that supp(P0) = supp(P1).
The general case is treated in [2].
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Theorem 1. Let P0, P1 be two probability distributions. We have

1− BestAdvq(P0, P1)
r

= 2−qC(P0,P1) (3)

This result verifies asymptotically that having access to q ≈ 1
C(P0,P1)

samples we can distinguish P0 from

P1 with a significant advantage.

3 Application to Boolean Cases

In this paper, we concentrate on applications of distinguishers in scenarios such as soundness amplification
and weakly verifiable puzzles. In all these relevant applications, we are trying to differentiate between a
legitimate and a malicious party. One strategy is to model this scenario as a distinguishing game between
two Boolean random sources. We consider the problem of distinguishing two Boolean random sources with
expected values a and b respectively. Suppose P0, P1 be two probability distributions over the set Z = {0, 1}.
Let

P0[X ] =

{

a X = 1
1− a X = 0

and P1[X ] =

{

b X = 1
1− b X = 0

We define a distinguisher which outputs 1 iff n1 ≤ m, where bq < m < aq and n1 is the number of occurrences
of 1 in the sample set. Intuitively, a refers to the probability that a legitimate user or a program can pass
a single challenge successfully and b refers to which of a malicious user or program. As a matter of fact,
we mostly investigate the protocols which are distinguishing a legitimate and a malicious user or program
offering them q times to try and then if they can pass with a particular minimum threshold, algorithm
outputs accept otherwise it rejects.
It can be shown using (2) that

m =
q

1− ln b
a

ln 1−b
1−a

(4)

defines the best distinguisher using q samples to distinguish P0 from P1 (Note that if a ≈ b, we have m ≈ q a+b
2

which is a pretty intuitive threshold).
Then, employing the Chernoff Information, Theorem 1 gives

1−Advq
r

= 2−qC(P0,P1)

More precisely, having access to q samples and using the binomial distribution

1−Advq =
∑

i≤m

(

q

i

)

ai(1− a)q−i +
∑

i>m

(

q

i

)

bi(1− b)q−i

= 1−
∑

i≤m

(

q

i

)

(

bi(1− b)q−i − ai(1− a)q−i
)

(5)

which is expressed as the concrete expression for computing the advantage of the best distinguisher. It might
be assumed that this bound only works when the adversary’s responses are independent, but we will show
in Theorem 3 that it is true even if the adversary’s responses are not independent, the only difference is an
additive factor of 2qǫ. In fact, the adversary may decide to answer identically to all challenges or decide to
respond to the following challenge as a function of the previous response. The fundamental question is that
whether she gains anything by following this approach. What we prove is that she gains an additive factor
of 2qǫ which can be made arbitrary small for constant values of m and q (see 3.1). The effect of ǫ would

6



be canceled out in the case of statistical soundness when proof systems are of interest since the prover is
supposed to be computationally unbounded.

A theorem by Hoeffding [21] called Chernoff-Hoeffding theorem gives an upper bound on the probability
of the addition of q identically independent Boolean random variables referred to as Chernoff-Hoeffding
bound which can be used as a bound in our distinguishing game.

Theorem 2. (Chernoff-Hoeffding Theorem) Let {X1, . . . , Xq} ∈ {0, 1}q be q identically independent
random variables with E[Xi] = a, for (1 ≤ i ≤ q). Then, for ∀b > a, we have

Pr

[

1

q

q
∑

i=1

Xi ≥ b

]

≤
(

(a

b

)b
(

1− a

1− b

)1−b
)q

= 2−qD(b‖a)

where D(b‖a) is the Kullback-Leibler divergence of Boolean random variables of expected values b and a.

As another representation, we can rewrite the Chernoff-Hoeffding bound as

q
∑

i=⌈bq⌉

(

q

i

)

ai(1− a)q−i ≤ 2−qD(b‖a)

Using the above representation of Chernoff-Hoeffding bound, we obtain

1−Advq ≤ 2−qD(m
q ‖a) + 2−qD(m

q ‖b) (6)

We will compare these bounds in section 3.2.

3.1 Soundness Amplification

As an application to the distinguisher in section 3, we consider interactive argument protocols which are
methods for one party to prove to another that a statement is true or a string belongs to a language. In fact,
we analyze the sequential composition of interactive arguments where the algorithm is expected to repeat
q times sequentially and if the number of successes is more than a specific threshold, the protocol outputs
accept otherwise reject. First, we define the notion of proof and argument systems.

Definition 2. Given a language L over an alphabet Z, an interactive proof system (resp. a computationally
proof system or an argument) for L is a pair (P ,V) of interactive machines, where P is computationally
unbounded (resp. P is computationally bounded) and V is polynomial-time such that there exist a polynomial
P and a, b, where 0 ≤ b < a ≤ 1 and

• Termination: for any x, ω, rP , rV , the total complexity of V (until termination) in P(ω; rP)
x↔ V(rV )

is bounded by P (|x|), where x is the security parameter.
• a-completeness: for any x ∈ L, there exists a string ω, such that

Pr
rP ,rV

(

OutV(P(ω; rP)
x↔ V(rV)) = accept

)

≥ a(|x|)

• b-statistical soundness (resp. b-computational soundness): for any x /∈ L and any computation-
ally unbounded (resp. polynomial-time) interactive machine P⋆

Pr
rP ,rV

(

OutV(P⋆(rP )
x↔ V(rV )) = accept

)

≤ b(|x|)
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Given an interactive proof system (P ,V) for L which is a-complete and b-sound, we define a new proof
system (Pq,Vq

m) with threshold m as follows

• Pq (resp. Vq
m) simulates P (resp. V), but have no terminal message until q(|x|) sequential iterations with

the same input x are made.
• after an iteration completes, they restart the entire protocol with fresh random coins.
• Vq

m accepts if at least m(|x|) iterations of V are accepted out of q(|x|).

We use the following Lemma to prove our main theorem.

Lemma 1. Assume that (P ,V) is a b-sound argument for L. Given q and ǫ such that qǫ−1 is polynomially
bounded in terms of |x|, we consider (Pq,Vq

m) and a polynomially bounded malicious P⋆. For I ⊆ {1, . . . , q}
we let pI be the probability that P⋆ succeeds in every iteration i for i ∈ I. Given J ⊆ {1, . . . , i − 1} and
I = J ∪ {i}, we have

pI ≤ max(bpJ , ǫ)

More precisely, if for some I this inequality is not satisfied, then there is a malicious prover for (P ,V) with
complexity qǫ−1 times the one by P⋆ to break b-soundness.

Proof. If pJ ≤ ǫ, the result is clear since pI ≤ pJ . Otherwise, we have pJ > ǫ. We construct a malicious
prover for (P ,V) who simply simulates i− 1 iterations for the verifier to P⋆. It repeats the simulation until
every iteration j for j ∈ J succeeds. The number of iterations is expected to be p−1

J which is dominated
by ǫ−1. Then it runs an extra simulation with the real verifier in the (P ,V) protocol. The complexity of
this malicious prover is bounded by qǫ−1 which is a polynomial. So, it is polynomially bounded and the
probability that the last iteration succeeds is bounded by b. Clearly, this is the conditional probability of
success given that every iteration j for j ∈ J succeeds. Hence, pI ≤ bpJ .

⊓⊔
Using the above lemma, we prove that soundness amplification in the threshold case behaves as expected

for statistical soundness in proof systems. Furthermore, there is only a small gap between the expected value
in statistical soundness and computational soundness when the number of repetitions is logarithmic.

Theorem 3. For any computationally sound proof system (P ,V) and for a language L and any q, m and ǫ
such that qǫ−1 is polynomially bounded in terms of |x|, we consider (Pq,Vq

m) with threshold m. If (P ,V) is
a-complete and b-sound, then (Pq,Vq

m) is a′-complete and b′-sound where

a′ =

q
∑

i=m

(

q

i

)

ai(1 − a)q−i

b′ =

q
∑

i=m

(

q

i

)

bi(1− b)q−i + 2qǫ

and the time reduction factor is of qǫ−1.

Note that if we know bq < m < aq and if we consider the optimal m by equation (4), the above theorem
shows that the completeness of the protocol increases and the soundness probability of the protocol declines
by q iterations. Since the reduction factor is qǫ−1, for constants m and q, the value ǫ can be fixed to an
arbitrary low constant, so we achieve

b′ =

q
∑

i=m

(

q

i

)

bi(1− b)q−i
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More generally, let ǫ = |x|−c, where c is a constant and set m to equation (4) and q be logarithmic in terms
of |x|, hence we obtain

a′ = 1−O
(

|x|−α
)

and b′ = O
(

|x|−β
)

with polynomial reduction factor. So, with a logarithmic number of repetitions we can make a′, b′ tend toward
1 and 0 respectively at a polynomial speed.

Proof. The proof for the a′-completeness is trivial using binomial distribution and considering that repetitions
are independent. For b′-soundness the prover may decide to evaluate iterations dependently. In fact, we show
that even if the prover does not consider each iteration independently, he may not achieve anything better
than responding to each iteration independently except with a gap of 2qǫ. We define pI as in the Lemma
1. Let Xj be a 0 or 1 random variable associated with the success of a malicious protocol P⋆ in the jth

iteration. We define px1...xi to be a pattern probability in i iterations as

px1...xi = Pr





i
∧

j=1

Xj = xj





and T as a random variable enumerating the number of times P⋆ passes the protocol and P = Pr(T ≥ m).
Note that px can be recursively defined from the set of pI ’s, then P can be computed. Due to Lemma 1,
pI ’s are subject to inequalities. We define an arbitrary ǫ > 0 and we first show that P is lower than a new
P called P ′ defined by a set of p′I ’s, where the inequalities in the Lemma 1 are replaced by equalities. Next,
we show that for this new set of pI ’s we have

P ≤
∑

i≥m

(

q

i

)

bi(1 − b)q−i + 2qǫ

to obtain b′-soundness.
For the first step, we use a rewriting procedure on the set of pI ’s. In the same time we verify that the

new set is still consistent with the law of probabilities, with the inequalities from the Lemma 1, and that
P only increases. By iterating the rewriting procedure we eventually obtain a new set of pI ’s satisfying
pI = max(bpJ , ǫ) for all I = J ∪ {i} with i > maxJ . The rewriting procedure works as follows.

Initially, we identify I = J ∪ {i} with i > maxJ , such that pI < max(bpJ , ǫ), then for any K ⊆
{i+1, . . . , q}, we have p′I∪K = (1−λ)pI∪K +λpJ∪K with λ such that p′I = max(bp′J , ǫ). Subsequently, we get

λ = max(bpJ ,ǫ)−pI

pJ−pI
. All other pJ ’s are left unchanged. This is equivalent to rewriting p′x0y = (1 − λ)px0y and

p′x1y = px1y + λpx0y for x ∈ {0, 1}i−1 such that xj = 1 for all j ∈ I. It can be shown that p′ only updates a
subtree starting at position I such that p′I = max(bp′J , ǫ). Ultimately, all the equalities are reached. To check

∑

x:x1+···+xq≥m

px ≤
∑

x:x1+···+xq≥m

p′x

we split the sum depending on x:

• for the set of y in which yj = 0 for some j ∈ J , we observe p′y = py.
• for the set of y of the form y = xβz with the cumulated weight of x and z be at least m and xj = 1 for

all j ∈ J , we group by the same x and z, since p′x0z + p′x1z = px0z + px1z.
• for the set of y of the form y = x1z with the weight m and xj = 1 for all j ∈ J , we observe that

p′x1z ≥ px1z.

9



We now assume that the pI ’s satisfy pI = max(bpJ , ǫ) for all I = J ∪ {i} with i > maxJ and we want to
upper bound P ′. Clearly, we have

p′I = max(b#I , ǫ)

When turned into p′x’s we have

p′x =







bw(x)(1− b)q−w(x) if w(x) ≤ τ
ǫ(1− b)q−w(x) if w(x) > τ and xq−w(x)+τ+1 = · · · = xq = 1
0 otherwise

for all I, where w(x) = x1 + · · ·+ xq and τ =
⌊

ln ǫ
ln b

⌋

. We have

P ′ =
∑

x:w(x)≥m

p′x

=
∑

x:m≤w(x)≤τ

p′x +
∑

x:w(x)>τ

p′x

≤
∑

i≥m

(

q

i

)

bi(1 − b)q−i + ǫ
∑

x:w(x)>τ

1xq−w(x)+τ+1=···=xq=1(1− b)q−w(x)

=
∑

i≥m

(

q

i

)

bi(1 − b)q−i + ǫ
∑

x:w(x)>τ

(

q − w(x) + τ

τ

)

(1− b)q−w(x)

≤
∑

i≥m

(

q

i

)

bi(1 − b)q−i + 2qǫ

⊓⊔

3.2 Application to Weakly Verifiable Puzzles

A weakly verifiable puzzle protocol is a game P = (D, R) between a solver and a verifier consisting of a set
of distributions D = {D1, ...,Dk} of cardinality k (the security parameter) which are defined on pairs (pi, ci)
[9]. In fact, pi is called a puzzle which is associated with a challenge from the verifier being sent to the solver
and we refer to ci as the check string. The second component is a relation R[(p, c), r] where r is a string of a
fixed length, which can be assumed as the solver’s response. The verifier is aware of pi and ci and so he can
inspect the response r of the solver. If R[(p, c), r] holds, we say that the solver passes, otherwise we say that
he fails. We define a direct product for P . That is, since q and m ∈ [0, q], we define P q

m = (D⊗q, Rq
m), where

Rq
m[((p1, . . . , pq), (c1, . . . , cq)), r1, . . . , rq]⇔ #{i ∈ [0, q]; R[(pi, ci), ri]} ≥ m

CAPTCHA is an example of such protocols. Another example is the Déjà vu protocol which is used as an
authentication method [16]. In fact, weakly verifiable puzzles are essentially 2-round interactive protocols
aimed at satisfying b-soundness for a category of malicious provers and a-completeness for a category of honest
provers. Clearly, we can apply our previous treatment on sequential iteration to the sequential composition
of weakly verifiable puzzles.

Let suppose that honest people pass with probability a and malicious programs pass with probability b.
The prominent issue is to find the best method to distinguish a human from a program using q attempts
4. This can be translated to a hypothesis testing problem, involved is a random variable accept with an

4 Intuitive solution is to ask for many independent challenges.
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expected value a (resp. b) associated with hypothesis H0 (resp. H1). We can use the results on the previous
distinguisher with an application to such puzzles.We use the theorem by Impagliazzo et al. [22] to estimate
the total probability of error the threshold-based distinguisher attains which can be used for the parallel
repetition of such protocols. This was the first bound found on upper bounding the success probability of an
adversary in the parallel composition of weakly verifiable puzzles in the threshold case. We consider a pretty
good CAPTCHA for which humans pass with probability a = 90% and such that there exist attacks solving
them with probability b = 33%. For instance, we can consider Gimpy. (see [31, 36]).

Theorem 4. (Impagliazzo-Jaiswal-Kabanets 2007) If all malicious algorithms can pass a challenge
with probability at most b, then the probability that a malicious algorithm passes the challenge at least m

times out of q parallel instances is lower than β = 2e−
(m−bq)2

64q .

Equivalently, if “pass”, b and m are replaced by “fail”, 1−a and q−m respectively, it leads to the expression

that legitimate people succeed less than m times out of q with probability lower than α = 2e−
(m−aq)2

64q . Hence,
the advantage of a distinguisher which distinguishes the legitimate users from malicious programs using the
threshold m can be computed as

1−Advq ≤ α + β = 2e−
(m−bq)2

64q + 2e−
(m−aq)2

64q (7)

Impagliazzo et al. [23] introduced a new bound for the corresponding probability distribution in 2009.

Theorem 5. (Impagliazzo-Jaiswal-Kabanets 2009) If all malicious algorithms can pass a challenge
with probability at most b, then the probability that a malicious algorithm passes the challenge at least m

times out of q parallel instances is lower than β = 100q
m−bq e−

(m−bq)2

40q(1−b) .

Similarly, using the threshold m

1−Advq ≤ α + β =
100q

m− bq
e−

(m−bq)2

40q(1−b) +
100q

aq −m
e−

(m−aq)2

40qa (8)

Recently, Jutla in TCC 2010 [26] and ECCC [25] improved the above bounds by using a uniformized
parallel solver who permutes the given q puzzles randomly, solve them and permutes them back. He uses a
linearly weighted metric to derive a tighter bound to the Chernoff bound, but as illustrated in the following
table, the results are still non-relevant in practice. It is because all three bounds still ask for a huge number
of CAPTCHAs which can not be used in real life.

Theorem 6. (Jutla 2010) If all malicious algorithms can pass a challenge with probability at most b, then
the probability that a malicious algorithm passes the challenge at least m times out of q parallel instances is

lower than β = 2(q−bq)3

(q−m)2(m−bq) . e−( q−m
2 )(m−bq

q−bq )2

if bq < min{m, q − 1}.

Similarly, using the threshold m

1−Advq ≤ α + β =
2(q − bq)3

(q −m)2(m− bq)
. e−( q−m

2 )( m−bq
q−bq )

2

+
2(aq)3

m2(aq −m)
. e−(m

2 )( aq−m
aq )

2

(9)

As an improvement, a new bound was derived by Jutla [25], which is still impractical.

1−Advq ≤ α + β =
4q2(1− b)2

(m− bq)(q −m)
. e−

(m−bq)2

2q(1−b) +
4a2q2

m((1 − b)q −m)
. e−

((1−b)q−m)2

2aq (10)
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Parallel Repetition Sequential Repetition
q m IJK07 (7) IJK09 (8) J10 (9) J102 (10) asymptotic (3) concrete (5) Chernoff (6)
1 0 > 1 > 1 N/A N/A 0.803 0.430 1.606
3 1 > 1 > 1 > 1 > 1 0.517 0.283 1.035
4 2 > 1 > 1 > 1 > 1 0.415 0.160 0.831
5 3 > 1 > 1 > 1 > 1 0.333 0.125 0.667
7 4 > 1 > 1 > 1 > 1 0.215 0.069 0.430

100 65 > 1 > 1 > 1 > 1 2−31.68 2−34.95 2−30.68

5000 3273 0.019 0.095 ≈ 0 > 1 ≈ 0 ≈ 0 ≈ 0

Table 1. [1 − Advq] (total error) comparison for 7 distinct bounds with respect to q for a = 90% and b = 33%, the
exact advantage is given by (5).

We compare the seven distinct bounds already discussed with the concrete value extracted in equation
(5). As a summary, the table of advantage bounds we already computed together with the concrete value for
the advantage of the distinguisher in section 3 is depicted in Table 1.

As the figures represent, for all the range of q the asymptotic value is the closest one to the concrete
value which illustrates a dramatic improvement in the number of samples (less samples for a fixed advantage)
or iterations required to run the mentioned protocols compare to the bounds of (7), (8), (6), (9) and (10).
Clearly, solving 4 CAPTCHAs in at most 7 sequential attempts provides an error probability below 10%
using parameters a = 90% and b = 33%. “(7), (8) bounds are quite weak when applied to concrete problems
such as actual CAPTCHA protocol with reasonable numbers of repetitions” [22, 23], which can be verified
by the result in the table above. Although we are comparing sequential with parallel composition, it makes
more sense to ask for 7 CAPTCHAs attempts sequentially than requiring to solve 5000 CAPTCHAs (as
(7) bound recommends) at the same time. It still remains an open problem to find a better bound which
works for the case of parallel repetition, one which provides values which can be implemented in practice.
Moreover, as can be observed from the above table the value of the concrete error is always less than the
asymptotic value which is the implication of Theorem 7.

4 Useful Bounds

In this section, we derive two bounds (see Appendix for the proof) which we use one in the ongoing section
and one which argues that the total error probability in the general case is bounded by its asymptotic value
and as was shown in the example in section 3.2, this provides a better bound than (6).

Theorem 7. Let Z be a finite set and P0 and P1 be two distributions with support of union Z and intersection
Z ′. Let BestAdvq(P0, P1) be the best advantage for distinguishing P0 from P1 using q samples. We have

1− BestAdvq ≤ 2−qC(P0,P1)

This result yields an upper bound on the probability of error of the best distinguisher. In fact, this result
can be verified by the comparison between the concrete value of the error and asymptotic bound derived
above.

Theorem 8. Let P0 and P1 be distributions of support Z, We have

1

8

∑

x∈Z

P0[x]

(

P1[x]− P0[x]

max(P0[x], P1[x])

)2

≤ 1− 2−C(P0,P1) ≤ 1

8

∑

x∈Z

P0[x]

(

P1[x]− P0[x]

min(P0[x], P1[x])

)2
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As a result, for P0 be the uniform distribution over a domain of size N , since P0[x] − ‖P1 − P0‖2 ≤ P1[x] ≤
P0[x] + ‖P1 − P0‖2, we can rewrite the bound as

1

8

N ‖P1 − P0‖22
(1 + N ‖P1 − P0‖2)2

≤ 1− 2−C(P0,P1) ≤ 1

8

N ‖P1 − P0‖22
(1−N ‖P1 − P0‖2)2

where ‖P0 − P1‖2 states the Euclidean distance between distribution P0, P1.

5 Multi-Session Leftover-Hash Lemma

Let X be a random variable over a finite set Z, the minimum entropy of X is defined as

H∞[X ] = − log (max
z

Pr[X = z])

The Rényi entropy [35] of order α, where α ≥ 0, is defined as

Hα[X ] =
1

1− α
log (

∑

z

Pr[X = z]α)

Notice that 2−H2[X] is the collision probability and 2−H2[X] ≤ 2−H∞[X] .
If X is a random variable over a setZ of order N , the square of Euclidean distance between the distribution

of X called P1[X ] and the uniform distribution P0[X ] can be expressed as

‖P1[X ]− P0[X ]‖22 = 2−H2[X] − 1

N

Let d(P1, P0) be the statistical distance between the distribution P1 and the uniform distribution P0, the
expression

d(P1[X ], P0[X ]) ≤
√

N‖P1[X ], P0[X ]‖2
shows the link between statistical and Euclidean distance of distributions.

Definition 3. Let H = {HN} : D → {0, 1}m be a family of functions, where N ∈ N . HN is a universal
hash function if for any x, y ∈ {0, 1}m such that x 6= y, we have

Pr(HN [x] = HN [y]) = 2−m

where N is uniformly distributed.

Lemma 2. (Leftover Hash Lemma [24]: Impagliazzo-Levin-Luby 1989) If h is a universal hash
function with a range of size 2m and X, N, U are independent random variables where N, U are uniformly
distributed and m ≤ H∞[X ]−2 log 1

ǫ , then the distributions of (hN [X ], N) and (U, N) are ǫ-indistinguishable.

We recall an application of the above Lemma in ElGamal encryption from Boneh [8]. Let 〈g〉 be a
subgroup generated by some g of prime order q in Z∗

p. Consider a scenario in which party A encrypts
a message m using the party B’s public key e. A picks a random value r ∈ Z∗

q and computes the pair

Enc[e, m; r] = (gr, mer) = (c1, c2) and sends it to B. At the other end based on the fact that er = cd
1 where

d is B’s private key (secret key), B decrypts the message by computing Dec[d, (c1, c2)] = m = c2/(c1)
d.

Key recovery in ElGamal encryption is equivalent to the discrete logarithm problem, likewise, the decryp-
tion is equivalent to Diffie-Hellman problem [8]. On the other hand, ElGamal is not a semantically secure

cryptosystem, because q| (p−1)
2 and so g

p−1
2 = 1. Let (a

b ) be the Legendre symbol for integers a and b, then
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(g
p ) = 1. We deduce that (mer

p ) = (m
p ). As a result, if for b = {0, 1} : (mb

p ) = (−1)b, a distinguisher can

distinguish Enc[e, m0; r] and Enc[e, m1; r] with advantage 1.
We define a new scheme based on ElGamal encryption which is argued to be (ǫDDH + ǫ)-IND-CPA secure.

Let 〈g〉 be a group generated by some g of prime order q. Following a similar approach as ElGamal, we define
the triple Enc[e, m; N, r] = (gr, m ⊕ hN [er], N) = (c′1, c

′
2, N) where r ∈ Z∗

q and N is uniformly distributed.

Analogously, A sends this triple to B and B decrypts it using Dec[d, (c′1, c
′
2, N)] = c′2 ⊕ hN [c′d1 ].

Due to the Decisional Diffie-Hellman assumption [8], (g, gr, m⊕hN [er], N) is ǫDDH-indistinguishable from
(g, gr, m⊕ hN [gr′

], N). According to Lemma 2, (g, gr, m⊕ hN [gr′

], N) is ǫ-indistinguishable from (g, gr, m⊕
U, N), where U is the uniform distribution. Furthermore, (g, gr, m⊕U, N) is perfectly indistinguishable from
(g, gr, U, N). Consequently, (g, gr, m⊕hN [er], N) is (ǫDDH + ǫ)-indistinguishable from something independent
from m which leads the scheme to be (ǫDDH + ǫ)-IND-CPA secure.

As another application to the Lemma 2, consider the Diffie-Hellman key exchange protocol. Let 〈g〉 be
a group generated by some g of prime order q. In a key exchange between two parties A and B, the party
A picks a random x ∈ Z∗

q and computes X ← gx and sends it to B. The party B aborts if X /∈ 〈g〉\{1},
otherwise he picks a random value y ∈ Z∗

q and computes Y ← gy and sends it to A. The party A aborts if
Y /∈ 〈g〉\{1}, otherwise Kses = gxy is computed and is shared between two parties as their session key. Since
Z∗

q is cyclic, Kses is a uniformly distributed non-neutral element of 〈g〉 (even locally under active attacks).
Assume a non-ambiguous representation format for values which may be in 〈g〉 or not

Pr(Kses = x) =







1
q−1 x ∈ 〈g〉\{1}

0 otherwise

Thus,
H∞[Kses] = log (q − 1)

Consider the protocol that exchanges a random number N and derives the key K = hN [Kses]. Let
ǫ =

√

2m/(q − 1) by Leftover Hash Lemma, K is indistinguishable from a random key. Moreover, a protocol
using n such key generations is nǫ-indistinguishable from the same protocol where K is truly random (thanks
to the hybrid arguments) implying that it is safe to generate the key n times using the same protocol until
n is of order

√

q.2−m. This result is originating from the trivial bound, which can be improved employing a
Multi-Sample Leftover Hash Lemma.

Lemma 3. (Multi-Sample Leftover Hash Lemma) Assume h is a universal hash function with a range
of size 2m and key space N . Let N ∈U N and U ∈U {0, 1}m and X be independent random variables. If

ǫ =
√

(2m − 1)2−H2[X] and ǫ′ = ǫ
√

2m#N , the best advantage for distinguishing (hN [X ], N) from (U, N)
using n samples is such that

1− BestAdvn
r

= 2−nC

where C is bounded by

− log

(

1− ǫ2

8(1 + ǫ′)2

)

≤ C ≤ − log

(

1− ǫ2

8(1− ǫ′)2

)

Although this result is not so precise, it already suggests that we could find a better bound. In the above
example, we have H2(X) = log(q − 1), so taking ǫ =

√

(2m − 1)/(q − 1) and #N ≪ q.2−2m, we obtain that
the minimal n for distinguishing is at least within the order of magnitude of ǫ−2 which is q.2−m.

Proof. Let P0, P1 be two distributions, we proved in Lemma 2 that ‖P1 − P0‖22 = 2−H2[X](1 − 2−m)/#N ,
where the domain size is 2m#N . Deploying Theorem 8, we get

1− 2−C(P0,P1) ≤ (2m−1)2−H2[X]

8
“

1−
√

(2m−1)2m−H2[X]#N
”2

= ǫ2

8(1−ǫ′)2
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Similar procedure can be shown for the lower bound.
⊓⊔

It has been shown that the min-entropy H∞(X) = m+2 log(1
ǫ )+2 log n suffices for the joint distribution

to be ǫ-close to the uniform distribution (see [12, 24, 38]). Furthermore, recently Chung et al. [13] improved
the previous bound by reducing 2 log n to log n and they proved that it is optimal for 2-universal hashing by
using Hellinger distance to evaluate the error accumulation over each hashed instance. In fact they showed
that

ǫ =

√

n

q.2−m

Therefore, the minimal n for distinguishing efficiently is of magnitude q.2−m which is the same bound we
found by another approach, that is Chernoff Information and asymptotic q-limited distinguisher.

6 Conclusion

We mentioned various applications of distinguishers in cryptography. We evaluated their efficiency using the
Chernoff Information. We revisited the interactive argument systems and relying on sequential repetition,
we derived new bounds for the soundness property of such protocols (computational soundness) even in the
case of dependent responses. Moreover, we compared seven distinct bounds for the error probability of the
best distinguisher in weakly verifiable puzzle protocols when q samples are given and concluded that the
asymptotic expression is the closest one to the concrete value compared to the bounds of equations (7),(8),
(6) and (9). We introduced an application to the Leftover Hash Lemma and by introducing the Multi-
Sample Leftover Hash Lemma we derived the same optimal bound as [13] with another approach (Chernoff
Information) when the number of iterations is more than unity. We specified the number of samples to obtain
a significant advantage in block ciphers cryptanalysis using Chernoff Information approach
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A Iterative Attacks on Block Ciphers

We now apply the results regarding simple hypothesis testing to block cipher analysis. We consider a statis-
tical distinguisher who has access to an oracle implementing either an instance c of a block cipher C or an
instance c of C⋆, a theoretical ideal scheme (sometimes called the perfect cipher) which corresponds to the set
of all possible permutations over the same text space as C. Viewing both C and C⋆ as sets of permutations,
the objective of the distinguisher is to choose between the hypotheses5

H0 : c ∈ C⋆ and H1 : c ∈ C

Oracle: a permutation c

1: for i from 1 to q do

2: pick (X1, . . . , Xd) according to the distribution D

3: for all 1 ≤ j ≤ d, query the oracle for Yj = c(Xj)
4: set Zi = h(X1, . . . , Xd, Y1, . . . , Yd)
5: end for

6: return A
⋆(Z1, . . . Zq)

Fig. 1. A q-limited iterative h-distinguisher of order d.

Most statistical distinguishers against block ciphers can be seen as q-limited iterative h-distinguishers
of order d given some parameters q, h, d. These distinguishers are formalized in Figure 1. At each of the q
iterations, the d-tuple (X1, . . . , Xd) is chosen according to a certain distribution D. The function h returns
at each iteration a value in a finite set Z. Under a hypothesis similar to that of the hypothesis of stochastic
equivalence [28], we can assume that the Zi’s follow a distribution P0 under hypothesis H0 (when c is an
instance of the perfect cipher) or a distribution P1 under hypothesis H1 (when c is an instance of the
block cipher considered). The two hypotheses can be reformulated as H0 : P = P0 and H1 : P = P1,
where P is the distribution according to which the Zi’s are sampled. Letting A⋆ be the best distinguisher
between P0 and P1, the iterated distinguisher finally outputs A⋆(Zq). From Theorem 1 we know that its
advantage Advq to distinguish H0 from H1 (i.e., the block cipher C from the perfect cipher C⋆) verifies

1 − Advq(H0, H1) = 1 − BestAdvq(P0, P1)
r

= 2−qC(P0,P1). This result verifies asymptotically that having
access to

q ≈ 1

C(P0, P1)
(11)

samples derived from the plaintext/ciphertext pairs allows to distinguish C from C⋆ with a significant ad-
vantage. As an illustration, we propose to revisit various classical iterated distinguishers, compute their

5 Note that the fact that the hypotheses are not disjoint is not a problem here, since all our previous results hold in
that case too.
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complexity based on (11) and derive their strategy from that of A⋆. We focus on the case of differential
distinguishers, impossible differentials and linear distinguishers. We attain estimate on q which are similar
as in [7]. (see equations (15), (16) and (17)).

In the current application, the two distributions P0 and P1 are very close. In that case, it is possible to
derive an approximation of the Chernoff Information that is easier to deal with. More formally, considering
the case where both distributions are of full support and letting ǫz = (P1[z] − P0[z])/P0[z] be such that

ǫz = o(1) for all z ∈ Z, then it can be shown (see [2, p.50]) that C(P0, P1) = 1
8 ln 2

∑

z

P0[z]ǫ2z + o(‖ǫ‖22),

where ǫ = (ǫz)z∈Z . Approximating the Chernoff Information by the right-hand side of the previous equation
leads to

C(P0, P1) ≈
1

8 ln 2

∑

z∈Z

(P1[z]− P0[z])2

P0[z]
. (12)

A.1 Differential Distinguishers

Differential distinguishers [6] are iterated h-distinguishers of order d = 2 where h(x1, x2, y1, y2) = y1 ⊕ y2

and for which the distribution D is such that X1 is chosen uniformly at random and X2 = X1 ⊕ a for some
fixed a. Typically, we expect h(X1, X2, Y1, Y2) = Y1 ⊕ Y2 to be biased under H1 and uniformly distributed
under H0. Under H1, we expect in practice for a well chosen b to have Y1 ⊕ Y2 = b with probability p and
Y1 ⊕ Y2 = b′ 6= b with probability 1−p

n−1 , where n is the cardinality of the text space, such that6 1
n = o(p) and

p = o(1). Accordingly, we have that P0 is the uniform distribution and that

P1[z] =

{

p when z = b,
1−p
n−1 = β when z 6= b

(13)

Under these notations, we now evaluate C(P0, P1) to approximate the number of plaintext/ciphertext pairs
required by a differential distinguisher to choose between C and C⋆ with a significant advantage.

Letting C(P0, P1) = − inf
0<λ<1

log F (λ) where F (λ) =
∑

z

P0[z]1−λP1[z]λ, we have

F (λ) =
p

(np)λ
+

1− p

(nβ)λ

We have F (0) = F (1) = 1 and F ′(0) ≤ 0, so that we know that F is minimum for a λ0 such that F ′(λ0) = 0.
We get

λ0 =

ln

(

p ln (np)

(1−p) ln 1−1/n
1−p

)

ln
(

np 1−1/n
1−p

) ∼ ln ln (np)

ln(np)
(14)

Consequently, (np)λ0 ∼ ln(np) and (nβ)λ0 = 1+o(p) and thus F (λ0) = 1−p+o(p). The Chernoff Information
verifies C(P0, P1) = − logF (λ0) ∼ p

ln 2 . We conclude from (11) that a differential distinguisher approximately
needs

q ≈ ln 2

p
(15)

samples to achieve a significant advantage.

6 These assumptions simply express the fact that we expect p to be small (otherwise the cipher would be trivial to
break), but much larger than 1

n
(otherwise the cipher would be impossible to break for the chosen a and b).
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It is also possible to find the practical (and optimal) strategy of a differential distinguisher. We know
that the best distinguisher A⋆ should yield 1 iff D(PZq‖P1) ≤ D(PZq‖P0) (see (2)). Since this is equivalent
to yielding 1 when 2q(D(PZq‖P1)−D(PZq ‖P0)) ≤ 1 and since

D(PZq‖P1)−D(PZq‖P0) =
∑

z

PZq [z] log
P0[z]

P1[z]
=

1

q
log

(β/p)nb

(nβ)q

where nb denotes the number of times where Y1 ⊕ Y2 = b, then the optimal strategy is to output 1 when

nb

q
≥ ln(nβ)

ln(β/p)
∼ p

ln(np)

Since we take q ≈ ln 2
p , this condition is equivalent to nb > 0. Subsequently, we can formalize a differential

distinguisher as in Figure 2.

Oracle: a permutation c

for i from 1 to q do

pick a uniformly distributed random X

query the oracle for c(X) and c(X ⊕ a)
if c(X ⊕ a) ⊕ c(X) = b, output 1 and stop

end for

output 0

Fig. 2. A differential distinguisher based on the input difference a and output difference b.

A.2 Impossible Differential

The scenario is similar to that considered in the case of differential distinguishers, except that the particular
difference b in the ciphertexts can never occur under H1, i.e., we have p = 0. Using the same notations as
in Section A.1, we now have F (λ) = (1 − 1/n)λ and so C(P0, P1) = − log (1− 1/n) ∼ 1

n ln 2 . Using (11) we
conclude that an iterative distinguisher based on an impossible differential requires

q ≈ n ln 2 (16)

samples to reach a significant advantage. It is easy to see that this distinguisher should output 1 iff nb = 0.

A.3 Linear Distinguisher

Linear distinguishers [30] are iterated h-distinguishers of order d = 1 where h(x, y) = a·x⊕b·y ∈ {0, 1} (where
· denotes the bit-wise xor) for some fixed input mask a and output mask b and for which the distribution
D is the uniform distribution. We expect h(x, y) to be biased under H1 and uniformly distributed under H0,
so that P0 is assumed to be uniform and P±

1 is such that P±
1 [0] = 1

2 (1 ∓ ǫ) and P±
1 [1] = 1

2 (1 ± ǫ) for some
positive real value ǫ. In this case, we have a composite hypothesis testing problem

H0 : P = P0 and H1 : P ∈ {P+
1 , P−

1 }
In such a case (see [2]), we have a best distinguisher which its acceptance region and advantage can be
specified by

Π⋆ = {P : min
1≤i≤k

D(P‖Pi) ≤ D(P‖P0)} and 1− BestAdvq(P0,D)
.
= max

1≤i≤k
2−qC(P0,Pi)
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Assuming that ǫ = o(1), we have from (12) that C(P0, P
±
1 ) ≈ ǫ2

8 ln 2 from which we conclude (using (11))
that a linear distinguisher requires

q ≈ 8 ln 2

ǫ2
(17)

samples to reach a non-negligible advantage. It is easy to see that this linear distinguisher should output

1 iff
∣

∣

∣
2n0

q − 1
∣

∣

∣
≥ |ǫ|

2 (where n0 denotes the number of 0’s in the Zi’s), so that we can formalize a linear

distinguisher as in Figure 3.

Oracle: a permutation c

initialize a counter m to 0
for i from 1 to q do

pick a uniformly distributed random X

query the oracle for c(X)
if a · X = b · c(X), increment the counter m

end for

output 1 if
˛

˛

˛
2m

q
− 1

˛

˛

˛
≥ |ǫ|

2
, otherwise output 0.

Fig. 3. A linear distinguisher based on the input mask a and output mask b.

B Proof of Theorem 7

Proof. Using (1), we have

1− BestAdvq(P0, P1) =
∑

zq

Pr[zq|P0]>Pr[zq|P1]

Pr[zq|P1] +
∑

zq

Pr[zq|P0]<Pr[zq|P1]

Pr[zq|P0]

=
∑

zq∈Z′q

min (Pr[zq|P0], Pr[zq|P1])

Since for ∀a, b > 0 : min(a, b) ≤ a1−λbλ and 0 ≤ λ ≤ 1, we have

1− BestAdvq(P0, P1) ≤ inf
0<λ<1

∑

zq∈Z′q

Pr[zq|P0]
1−λ Pr[zq|P1]

λ

= inf
0<λ<1

∑

zq∈Z′q

q
∏

i=1

P0[zi]
1−λP1[zi]

λ

= inf
0<λ<1

(

∑

z∈Z′

P0
1−λ[z]P1

λ[z]

)q

= 2−qC(P0,P1)

⊓⊔
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C Proof of Theorem 8

Proof. Let λ be such that

F (λ) =
∑

x∈Z

P0[x]1−λP1[x]λ

and let P1[x] = P0[x](1 + ǫx) with ǫx ≤ Bx, where Bx = 1
P0[x] − 1, We have

F (λ) =
∑

x∈Z

P0[x](1 + ǫx)λ

Thanks to the Taylor Theorem, for any ǫ there exists θ ∈ [0, 1], such that

(1 + ǫ)λ − (1 + λǫ) =
λ(λ − 1)

2
ǫ2(1 + θǫ)λ−2

Since
∑

x

P0[x](1 + λǫx) = 1, we obtain

1− F (λ) = λ(1−λ)
2

∑

x

P0[x]ǫ2x(1 + θxǫx)λ−2

= λ(1−λ)
2

∑

x

P0[x]
(P1[x]− P0[x])2

P0[x]2
(1 + θxǫx)λ−2

If ǫx ≥ 0, then (1 + θxǫx)λ−2 ≤ 1 and P0[x] ≤ P1[x]. Otherwise, (1 + θxǫx)λ−2 ≤
(

P0[x]
P1[x]

)2

and P1[x] ≤ P0[x].

Ultimately,

1− inf
0<λ<1

F (λ) ≤ 1

8

∑

x∈Z

P0[x]

(

P1[x]− P0[x]

min(P0[x], P1[x])

)2

The other inequality can be shown similarly.
⊓⊔

D Proof of Lemma 2

Proof. We define P0 and P1 as two distributions and compute the Euclidean distance

‖P1 − P2‖2 =
∑

k,n

(

Pr
X,N

[hn[X ] = k, N = n]− 1

2m#N

)2

= 1
(#N )2

∑

k,n

Pr
X,X′

[hn[X ] = hn[X ′] = k]− 1

2m#N

= 1
#N

∑

x,x′

Pr[X = x, X ′ = x′, hN [x] = hN [x′]]− 1

2m#N
= 1−2−m

#N

∑

x

Pr[X = x]2

≤ 1−2−m

#N 2−H∞[X] ≤ 1
2m#N ǫ2

Applying the link between the statistical distance and Euclidean distance, we obtain d(P1, P2) ≤ ǫ.
⊓⊔
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