
Trap Me If You Can

Million Dollar Curve

Thomas Baignères1, Cécile Delerablée1, Matthieu Finiasz1, Louis Goubin2,
Tancrède Lepoint1, and Matthieu Rivain1?

1 CryptoExperts, Paris
2 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université

Paris-Saclay, 78035 Versailles, France
curves@cryptoexperts.com

March 1, 2016

Abstract. A longstanding problem in cryptography is the generation of
publicly verifiable randomness. In particular, public verifiability allows to
generate parameters for a cryptosystem in a way people can legitimately
trust. There are many examples of standards using arbitrary constants
which are now challenged and criticized for this reason, some of which
even being suspected of containing a trap. Several sources of public en-
tropy have already been proposed such as lotteries, stock market prices,
the bitcoin blockchain, board games, or even Twitter and live webcams.

In this article, we propose a way of combining lotteries from several
different countries which would require an adversary to manipulate sev-
eral independent draws in order to introduce a trap in the generated
cryptosystem. Each and every time a new source of public entropy is
suggested, it receives its share of criticism for being “easy to manipu-
late”. We do not expect our solution to be an exception on this aspect,
and will gladly receive any suggestion allowing to increase the confidence
in the cryptosystem parameters we generate.

Our method allows to build what we call a Publicly verifiable RNG, from
which we extract a seed that is used to instantiate and initialize a Blum-
Blum-Shub random generator. We then use the binary stream produced
by this generator as an input to a filtering function which deterministi-
cally outputs secure and uniformly distributed parameters from uniform
bitstreams.

We apply our methodology to the ECDH cryptosystem, and propose the
Million Dollar Curve as an alternative to curves P-256 and Curve25519.

Keywords: Publicly verifiable RNG, lottery, trusted cryptosystem pa-
rameters, elliptic curve, Million Dollar Curve, decentralized beacon, NSA,
Snowden.

? With a Little Help from our Friends [3]

2

1 On the Need for Convincing Randomness Generation
in Cryptography

Designing a secure cryptographic algorithm is a complex process. An even more
complex process is to design a secure cryptographic algorithm that people le-
gitimately trust as such. One reason stems from the fact that, when designing
a cryptosystem, a cryptographer repeatedly has to make choices. Most of the
time, a majority of these choices can be ruled out immediately for security rea-
sons. But, in the end, one is often left with several “acceptable” options. In that
situation, the cryptographer can essentially

– arbitrarily choose one of the options (e.g., the “best looking” one), or

– pick an option at random using a process that can be verified a posteriori.

Is arbitrariness acceptable? There is a long history of cryptographic algorithms
and standards using arbitrary constants, sometimes referred to as “nothing up
my sleeve numbers” [42] (NUMS). For example, all the hash functions belonging
to the SHA family use, at some point, round constants. To the best of our knowl-
edge, those constants never raised any serious concern among the cryptographic
community, probably because introducing a non-obvious weakness (i.e., a trap)
in a symmetric cryptography primitive by manipulating only a few constants
appears to be extremely hard, if not unfeasible, as long as the primitive builds
upon simple and sound security arguments.

Many asymmetric primitives also fall short when it comes to finding a justi-
fication for the choice of some of their inner constants. Unlike symmetric primi-
tives, this fact has regularly been proven to be a serious threat for the security
of the concerned primitive. Recent and infamous examples include Dual-EC-
DRBG, one of the pseudo-random number generators defined in SP 800-90 [29].

The case of Dual-EC-DRBG. Like most PRNGs, Dual-EC-DRBG maintains an
internal state s. This 256-bit state is updated by computing s = x(sP), where
P is a fixed point on the elliptic curve P-256 [43, Appendix J.5.3] specified
in [29, Appendix A.1.1], and where x(·) maps a point to its first coordinate.
From each state, one can derive up to 30 bytes of randomness, by computing
r = x(sQ) (discarding the 16 most significant bits of r), where Q is another
fixed point on the curve, also specified in [29, Appendix A.1.1]. Apart from
its poor performance and statistical properties [22,37], Shumow and Ferguson
showed in [38] how simple it is for the designer to introduce a trap in Dual-EC-
DRBG: since the order of P-256 is prime, Q is a generator, and there must exist
some ` such that P = `Q. Computing ` from the sole knowledge of P and Q is
hard, but the designer could have first generated Q and `, and then computed
P = `Q. Assume this is the case and consider the situation where Alice runs
Dual-EC-DRBG and generates a public r. From r, anyone can recompute the
y coordinate of sQ. From the knowledge of `, the designer can also compute
`sQ = s`Q = sP , from which he can deduce the next internal state of Alice’s

3

Dual-EC-DRBG instance, and thus predict all future outputs.3 One can note
that the ` mentioned above always exists, the real question being whether the
designer did, or did not draw the parameters in such a way that this value is
actually known to him, both situations being indistinguishable for an outsider.
As shown by Shumow and Ferguson [38] an obvious fix would be to generate a
random point Q for each instance of the PRNG.

Unfortunately, the Dual-EC-DRBG case is not as specific as it might look.
For example, Bernstein et al. show in [7] how easy it is for a malicious designer to
manipulate his asymmetric design, by simply choosing a few constants without
justification.

Rule of thumb. Of course, one should not conclude that cryptographic algorithms
using similar constants are systematically insecure (certainly, some designers
are honest) and we will not dispute the right to trust those algorithms. Yet,
in the perspective of eventually obtaining a legitimately trusted cryptographic
algorithm, we believe that one should rule out any cryptographic design involving
arbitrary choices.

Randomness to the rescue. Many cryptographic standards have chosen to avoid
unjustified choices. For example, X9.62-1998 [43, p.31] argues that “In order
to verify that a given elliptic curve was indeed generated at random, the defin-
ing parameters of the elliptic curve are defined to be outputs of the hash function
SHA-1 [...]. The input (SEED) to SHA-1 then serves as proof (under the assump-
tion that SHA-1 cannot be inverted) that the parameters were indeed generated
at random”. The proof for the P-256 curve is given later in the document [43,
p.117]:

SEED = C49D3608 86E70493 6A6678E1 139D26B7 819F7E90

Yet, the X9.62 standard does not explain how this particular seed was chosen.
Concerning this issue, Schneier writes: “I no longer trust the constants. I believe
the NSA has manipulated them through their relationships with industry.” [36]
Bernstein et al. show in [7] that allowing unjustified seeds makes it possible for
the designer to manipulate the standard almost as easily as in the previous case.4

Hopefully, not all standards follow the X9.62 example. For example, the
Brainpool standard [1] complains that, although many standard proposals exist
for elliptic curve cryptography, “The choice of the seeds from which the curve
parameters have been derived is not motivated leaving an essential part of the
security analysis open”, further adding that “The curves shall be generated in
a pseudo-random manner using seeds that are generated in a systematic and
comprehensive way”. Thereafter, the standard lists seven seeds, based on the
decimals of the Euler number e. Those seeds are used to feed an algorithm, simi-
lar to the one specified in X9.62, which generates seven curves of various security

3 Note that, for the sake of concision, we skipped a few technical details (see [10] for
the full story of Dual-EC-DRBG).

4 Also, we would like to emphasize that “undermining of cryptographic solutions and
standards” is repudiated by the IACR (cf. the IACR Copenhagen Resolution).

https://www.iacr.org/misc/statement-May2014.html

4

levels. Yet, [7] criticizes this approach as well, arguing that the designer can still
manipulate the choice of the seed (why e, and not π, sin(1),

√
2 or (1 +

√
5)/2?),

the choice of the hash function in the algorithm turning the seed into concrete
parameters (why SHA-1, and not SHA-xxx?), the way one extracts bits from
the seed, etc. Similarly, Aumasson illustrated in [2] that the degrees of freedom
in the process of going from NUMS choices to actual parameters (namely the
encoding, the number itself, the hash functions, the decoding, etc.) gives a lot
of leeway in how to select weak parameters.

Another pitfall suffered by the Brainpool standard has been recently discov-
ered by the BADA55 Research Team. In their own words, “none of the standard
Brainpool curves below 512 bits were generated by the standard Brainpool curve-
generation procedure” [40]. It appears that, until this finding, no-one actively
verified all of the Brainpool curve generation on the basis of the generation pro-
cedure specified in [1, Section 5]. This example shows how important it is for
the honest designer to provide third-parties with simple means of checking the
parameters generation. Although this can take many forms, the Brainpool ex-
ample argues in favor of executable and readable code instead of an algorithmic
description on paper.

One should not conclude that elliptic curve parameters should not be chosen
at random, but rather that doing so is more complex than one might first think.

A way to generate a curve in a fully transparent way, so that it can be
legitimely trusted, has recently been proposed [20], but no explicit proposal for
an elliptic curve is made. This paper also provides a nice and complete list of
security criteria for choosing elliptic curve parameters. The format of a certificate
is then proposed to ease the computations of verifying elliptic curves parameters.

1.1 Our Contributions

In this work, we propose a hopefully convincing (and amusing) solution to the
problem of generating publicly verifiable randomness in an unimpeachable fash-
ion.

Our first contribution is to introduce the notion of Publicly verifiable RNG,
that is a source of entropy that is not only unpredictable, unbiased, publicly ob-
servable but also archived (and therefore easily verifiable in the future). We then
show how to leverage these strong security properties to (almost) fully automate
the process of instantiating a trusted cryptosystem. In particular, we revisit the
different steps of a cryptosystem instantiation by splitting it into: (1) a times-
tamped design that includes the full specification of the system, regardless of
the seed it will use, (2) a timestamped standard that commits on the design, on
a seed extractor that uses a well-specified Publicly verifiable RNG, and a time pe-
riod in the future to instantiate the seed extractor, (3) the cryptosystem concrete
instantiation using the aforementioned design and standardized procedure, and
finally (4) the key generation in the cryptosystem by the final user. Distinguish-
ing these steps allows to easily associate to each step the required competence;
e.g. the design specification (1) is the only one requiring the intervention of a
cryptographer, while anyone can instantiate the cryptosystem at Step (3).

5

Next, we describe how to build a Publicly verifiable RNG based on several
national lottery results. National lotteries are randomness sources for which it is
possible to measure the exact amount of entropy contained in each observation,
and great care is usually taken on the randomness quality, which make them ideal
entropy sources for a Publicly verifiable RNG. Then, we explain how to construct
a seed extractor based thereon.

Last but not least, we provide a full-fledged example by instantiating in the
future, using future national lottery results, an elliptic-curve suited for ECDH
key exchanges named the Million dollar curve [18].

1.2 Related Work

A notion similar to our Publicly verifiable RNG was recently proposed by Bon-
neau, Clark and Goldfeder in [14], as a “decentralized beacon with no trusted
parties”. The notion of beacon in cryptography was first introduced by Rabin [32]
in the context of contract signing: a trusted third party regularly emits randomly
chosen integers. As of today, several proprietary randomness beacons are avail-
able on the Internet, such as the NIST Randomness Beacon or Random.org, but
these beacons cannot be used as cryptographic sources of randomness.5 To avoid
trusted third parties, Bonneau et al. proposed a decentralized beacon based on
bitcoin’s blockchain [14], and provide precise security guarantees (namely that
the beacon is manipulation-resistant against an attacker with a stake of less than
B50 in the output). Our notion of Publicly verifiable RNG can be seen as a decen-
tralized beacon with no trusted parties, which emits every time period an array
of random values (possibly empty), and based on an archived source of random-
ness.6 In this work we propose a construction of Publicly verifiable RNG based on
national lotteries, and [14] could be trivially adapted to become a blockchain-
based Publicly verifiable RNG, which is an interesting second possible Publicly
verifiable RNG. Other attempts to produce randomness from publicly observable
events have also been proposed in the literature, e.g. a beacon based on the stock
market [15], or locally-verifiable randomness generation from cards, coins, dices,
Boggle boards, sun stains or drawings [35,16,23,20]. However, it remained un-
clear (until [14]) how to construct a fully decentralized publicly verifiable beacon
with no trusted third party.

Another interesting document is the RFC 2777 of the IETF [24]. To select as
randomly as possible the nominations committee so that “no reasonable charges
of bias or favoritism can be brought”, this document proposes a method that
commits on a design, and on 3 lottery draws that will happen in the future.7

5 In particular, the NIST strongly emphasizes “WARNING: DO NOT USE BEACON
GENERATED VALUES AS SECRET CRYPTOGRAPHIC KEYS.” on the beacon
website, and Random.org states that “The numbers generated by RANDOM.ORG
are buffered”.

6 In other words, one could say that a Publicly verifiable RNG produces an unpredictable
common random string [13].

7 The number of lottery draws is small on purpose to avoid unanticipated situations
in case of cancellation, etc.; in our case we will rather take a large enough margin

http://www.nist.gov/itl/csd/ct/nist_beacon.cfm
https://www.random.org/

6

From these draws, a hash will be derived (MD5 is suggested—which was already
audacious in 2000), to obtain 128 bits of entropy which can then subsequently
be used to select the nomination committee.

Finally, generating cryptographic parameters using “incontestable genera-
tion of random numbers” has already been suggested in the literature [23,28,20].
In [23], Mike Hamburg suggests to use games (such as Boggle boards or Ba-
nanagrams tiles) played during social events of cryptography conferences. Pho-
tographs and videos of the outputs together with handwritten hashes of the
parameters generation algorithms allow to later verify the curves were randomly
generated with these algorithms and random values. This interesting idea of us-
ing a source of randomness that can be influenced (manipulated?) by anyone
participating in the initial stages of the seed generation is also at the core of
Lenstra and Wesolowski’s random number generator [28] (with tweets, pictures
of a public place and a webcam that films the camera). In the latter paper, to deal
with powerful adversaries who could try to manipulate the seed, they also use
a slow hash function. However, the aforementioned elliptic curve service genera-
tions are centralized, and are not easily reproducible by everyone. In particular,
after the period of time during which tweets are collected, the methodology re-
quires the central authority to take a picture and to immediately share the hash
of the tweets and the picture. The picture increases the final quantity of entropy
and helps protecting against malicious tweets, the tweets protect against a mali-
cious central authority (which could otherwise choose/alter a picture leading to
a potentially unsafe curve). While this solution looks like it could be solving the
problem, in practice people hardly ever participate with a tweet8, leading to most
curves being 100% centrally generated. In our solution, or in a solution based
on Bitcoin’s blockchain (as in [14]), the entropy source is fundamentally decen-
tralized, leading to a solution that is easier to set up in a confidence-inspiring
way.

1.3 Outline

First, motivated by a trustworthy generation of cryptosystem, we introduce the
notion of Publicly verifiable RNG and revisit the process of instantiating a cryp-
tosystem in Section 2. Then, we describe a Publicly verifiable RNG based on sev-
eral national lottery draws in Section 3, and explain how to produce a random
seed containing enough entropy from such a Publicly verifiable RNG in Section 4.
Finally, we describe how to produce parameters for the Blum-Blum-Shub ran-
dom number generator to spread the seed entropy. Each section will include a

to avoid being affected by such events. Also, it is emphasized that the last source
(chronologically) should be especially strong and unbiased source of a large amount
of the randomness; as we will extensively discuss in Section 4.4 and 4.5, we will com-
pletely departs from this paradigm in order to be secure against “real adversaries”
with “enormous budget” and very strong adversarial motivation [34].

8 One can check that none of the 128-bit security curves of January 2016 were influ-
enced by any tweet.

7

concrete toy example, that will eventually produce to the Two Cents Curve in
Section 6.2.

Last, but not least, we introduce the Million Dollar Curve, an Edwards curve
to be generated in February 2016, using worldwide lottery draws, and we chal-
lenge any real adversary to trap it. Good luck!

2 Generating Legitimately Trusted Cryptosystems

2.1 State of the Art

Usually, everything starts with the publication of an article proposing a new
cryptographic construction. Sometimes, the designers also propose some “secure”
parameter sizes, based on their own analysis of the design. But then a lot of nice
things turn bad out there [39], specific instances of this cryptosystem using these
parameters generally get attacked, and parameter requirements are updated.
After some time, things settle down, and the cryptographic community agrees
on a set of criteria that secure parameters should verify. Eventually, a specific
secure set of parameters gets standardized (or becomes a de facto standard) and
people start using the resulting cryptosystem, each user generating his or her
own key.

Generally, there are many parameter choices that will meet all the security
criteria, so a choice will eventually have to be made. Keeping in mind that
arbitrary (non verifiable) choices should systematically be avoided, there are
only two options left:

– Define additional criteria so as to reduce the set of acceptable parameters to
(essentially) one candidate. However, these criteria should not be arbitrary,
and should follow sound and justifiable arguments, typically implementation
aspects (see the example below).

– Draw one candidate at random, in a convincing way, avoiding the pitfalls of
Section 1 to begin with.

Example. For the elliptic curve version of the Diffie-Hellman key exchange pro-
tocol, choosing parameters consists in specifying a curve and a group generator.
Although there are many security criteria (underlying field size, group order,
etc.9), the set of acceptable curves is huge. It is commonly agreed that Edwards
curves [19] are well suited for cryptographic applications [9], so it appears nat-
ural to add this criterion. The equation of an Edwards curve over a prime field
Fp of odd characteristic p is

x2 + y2 = 1 + dx2y2

where d ∈ Fp \ {0, 1}. Remain to be chosen, the prime p and the scalar d.
Curve25519 [4,5] is one example of justified parameter choices where p = 2255−19

9 See [8,20] for a complete list of security criteria.

8

and d = 121665/121666 [9].10 This curve verifies all the security criteria, and
was specifically selected to offer extremely high performance on a prime field.

It is a well accepted principle that putting all your eggs in one basket is
a bad idea, and cryptography is no exception. We therefore need convincing
alternatives to Curve25519. Obviously, trying to verify the same criteria than
Curve25519 will require to beat Curve25519 at its own game, which will certainly
imply a considerable amount of work. Instead of focusing on raw performance
on a prime field11, another selection criteria could be used (such as code size,
memory footprint, hyperelliptic curves, etc.), but this will allow to select, at
best, a few alternatives. For all those situations where extreme performance or
tiny code size are not mandatory, we believe there are easier ways to convince
people. For this, we propose to automate the instantiation of the cryptosystem.
As we will see in Section 2.3, we will require a particular way of generating
randomness, through what we call a Publicly verifiable RNG.

2.2 The Need for a Publicly Verifiable RNG

A typical way of generating randomness in cryptography is to combine a hard-
ware true random number generator (TRNG) with a cryptographically secure
pseudo-random number generator (PRNG). When properly implemented, this
design allows to output sequences of unbiased and independent bits at a very
high output rate. However, the entropy of a TRNG generally comes from a small
hardware module (oscillators, resistors, etc.) which make it impossible to prove
that a specific seed was indeed generated by this TRNG. Even if the seed came
with such a proof, it would be impossible to guarantee that this specific output
was not cautiously selected among a huge set of outputs from this TRNG. As a
consequence, using such a TRNG to generate the parameters of a cryptosystem
would most probably lead to criticism similar to that raised in [7] about the
Brainpool seeds.

The previous discussion leads us to the conclusion that we require a Publicly
verifiable RNG, that is, a source of entropy which is

– very hard to manipulate/predict,
– publicly observable, i.e., such that all outcomes are public, and
– archived, so that anyone can pick a past date and get the corresponding

outcome.

There are many such sources, such as stock market data12, sports scores13,
weather data around the world, or national lottery results. All those examples

10 Although Curve25519 was initially given in Montgomery form, it can be shown to
be birationally equivalent over Fp to the Edwards form given here, see [9].

11 For example, by departing from a prime field setting, curves such as the FourQ
curve [17] or some genus-2 hyperelliptic curves [6] have shown to offer extremely
high-performances.

12 Under the “Perfect market” assumption.
13 Excluding soccer results for safety.

9

produce randomness at predictable moments in time. Yet, among those exam-
ples, national lotteries are the only sources for which it is possible to measure
the exact amount of entropy contained in each observation. For this reason (and
some others), we will use them in Section 3 to implement a concrete Publicly
verifiable RNG.

2.3 Automating the Instantiation of a Cryptosystem

Following the discussion of the two previous sections, we investigate how to
(almost) fully automate the process of instantiating a cryptosystem by leveraging
on the good properties offered by a Publicly verifiable RNG. Fig. 1 presents our
vision of how the different steps of the instantiation of a cryptosystem should be
organized, from its early design to its concrete instantiation/personalization for
a user.

– The Designer is responsible for producing (at some time t0) the complete
Design, composed of
• the full specification of the cryptographic algorithms composing the Cryp-

tosystem, where there might still exist parameters left to be defined;
• a list of Security criteria such that any instantiation (i.e., parameter

choice) of the Cryptosystem meeting these criteria is secure with respect
to the current state of cryptographic research;

• the Parameter space, which is nothing more than the set of all parameters
matching all the Security criteria;

• a deterministic filtering function f , mapping any seed of appropriate
length onto specific values of the Parameter space. This function should
not introduce any distinguishable bias, i.e., a uniformly distributed ran-
dom seed should produce parameters that are indistinguishable from uni-
formly distributed parameters in the Parameter space. In practice, this
function has to be easy to compute for anyone, typically by publishing
clear (and correct) source code for this function.

– The Design is then timestamped at time t0. The resulting timestamp should
allow Anybody, at any time t ≥ t0, to make sure that the Design did not
suffer any modification since time t0.

– The Standardizer chooses (at time t1 ≥ t0) and commits (at time t2 ≥ t1) on
• a specific timestamped Design,
• a specific Publicly verifiable RNG, and
• a Seed Extractor, that is, a clear description of the way the entropy shall

be extracted from the Publicly verifiable RNG and two times t3 and t′3.
The time t3 is the precise time at which the Seed Extractor starts to
extract entropy and must be such that t3 > t2. The time t′3 is a time
after which enough entropy will have been collected by the Seed Extractor
to generate a seed of appropriate length. Depending on the nature of
the Publicly verifiable RNG, one might or might not be able to exactly
predict the amount of entropy produced over a precise period of time, so

10

personalizes
t5

chooses
t1

com
m
its

t2

generates
t3 '

instantiates
t4

designs
t0

Key
space

Setofacceptable
keys

Instantiated
Cryptosystem

Fixed
param

eters
Unspecified

key

Fixed
param

eters
Fixed

key

Cryptosystem
Unspecified

param
eters

Unspecified
key

Param
eterspace

Setofacceptable
param

eters

D
eterm

inistic
procedure

m
apping

a
seed

onto
acceptable

param
eters

Filtering
function

Security
criteria

User

D
esigner

Standardizer

Anybody
Com

m
itm
ent

Seed

Param
eters

Keyed
Cryptosystem

Tim
estam

p

Tim
estam

p

Seed
Extractor

Publicly
verifiable

RNG

F
ig
.
1
.

H
ow

to
p
ro

p
erly

ra
n
d
o
m

ly
d
raw

th
e

p
a
ra

m
eters

o
f

a
cry

p
to

sy
stem

.

11

t′3 should be picked with a safety margin, so that the probability of not
gathering enough entropy between t3 and t′3 is negligible.

This Commitment is timestamped in such a way that Anybody, at any time
t ≥ t2, can check that the Commitment was indeed produced at time t2 < t3.

– At any time t4 ≥ t′3, Anybody can instantiate the timestamped Design into
a unique Instantiated Cryptosystem and a Key space. Essentially, this step
specifies the Parameters by computing f(seed), where f(·) is the Filtering
function specified in the Design and seed is the entropy extracted from the
Publicly verifiable RNG between times t3 and t′3 with the Seed Extractor.

– At any time t5 ≥ t4, any User can make use of the well defined Instantiated
Cryptosystem (with fixed parameters, common to all users) and Key space.
A User would typically uniformly draw a key in the Key space in order to
generate his own Keyed Cryptosystem. This Personalization process is out of
the scope of this article as we cannot control the way the User chooses his
own key.

Leave (all) the hard work to the experts. Among the various steps we just sug-
gested, producing the complete Design is the only one requiring expert knowledge
(i.e., the intervention of a cryptographer). This is also why the Security criteria
and the Filtering function are part of the Design: choosing them requires expert
knowledge, and it is important that they can be reviewed by the cryptographic
community, like the Cryptosystem itself. Of course, a strong expertise is also re-
quired to properly implement the final cryptosystem, but this step is outside the
scope of this paper.

An automatable design. Selecting parameters should not require any hard work
from the Standardizer. This is indeed the case in our process, since this selection
only consists in choosing a Publicly verifiable RNG and a Seed Extractor with two
times t3 and t′3. As we will see in Section 3, there are plenty of Publicly verifiable
RNGs to choose from.

Designer vs. Standardizer. As we have seen in Section 1, it is generally a bad
idea to let the Designer choose the parameters of his own Design. This situation
occurred many times in the past, mainly because selecting secure parameters is a
complex task. In our design, we dissociate the selection criteria from the selection
itself. The Security criteria are complex and are thus left to the Designer, while
the actual selection is simple and can be done by the Standardizer.

Using a real entropy source. Many of the concerns mentioned in Section 1 rise
from the fact that both the seed and the Filtering function used for the parameters
generation are chosen simultaneously. Because of this, there is no way to prove
that the design of the Filtering function was not influenced by the outcome of the
seed generation. The only “clean” way of choosing a Filtering function is to define
it with no a priori knowledge of the seed. This also implies that the seed must
contain enough entropy for the Standardizer to have no advantage at guessing

12

the outcome of the Filtering function (the actual parameters). In that situation,
there is no way to introduce a trap in the parameters, even if the Standardizer
colludes with the Designer. As a consequence, the Standardizer and the Designer
can be the same person.

Protection against “0-day” attacks. Obviously, the Security criteria can only take
public attacks into account. Yet, unpublished “0-day” attacks can exist (i.e.,
attacks that nobody else knows about), but chances are that these attacks only
affect a small fraction of the Parameter space (see also [7]). In order to take a
walk on the safe side [33], Anybody should make sure at instantiation that the
Standardizer did not make too many commitments (ideally, a single one). We will
discuss “0-day” attacks further in Section 4.4.

Nature of the timestamps. The Timestamp on the Design allows to freeze a Design
in time, whereas the Timestamp on the Commitment allows to prove that this
Design, the Publicly verifiable RNG, and the Seed Extractor and times t3 and t′3
were chosen before t3. Because we assume that Publicly verifiable RNGs naturally
generate, alongside the seed, a proof that this seed was generated at a specific
moment in time, there is no need to add another Timestamp. The most natural
way to timestamp the Design and the Commitment is, for example, to publish
a hash of them in the day’s newspapers.14 This way, anyone may subsequently
consult this “proof” at the public library archive and check that the Timestamps
are indeed older than t3. In addition, this method makes it difficult/expensive for
a malicious Standardizer to commit inconspicuously on many different Publicly
verifiable RNGs, rendering “0-day” attacks less likely.

2.4 Parameters Validation Checklists

There are many things to validate before using parameters generated through
our process. Some of these validations require expert knowledge and should be
left to the cryptographic community, while some can be checked by just about
anyone (and we encourage anyone to check them).

Members of the cryptographic community are in charge of validating any
aspect of the Design, including:

– cryptanalysis of the Cryptosystem;
– ensuring that the Security criteria are exhaustive, i.e., sufficient to be safe

against all known attacks against the Cryptosystem;
– verifying that the Parameter space matches the Security criteria;
– verifying that the Filtering function matches the Security criteria.

This validation should be an ongoing process, such that any advance on the
cryptanalysis side results in an appropriate update of the Security criteria, Pa-
rameter space, and Filtering function. Note that any such update requires to

14 In practice, online publishing on the IACR Cryptology ePrint Archive might be
convincing enough.

13

timestamp the design again, but does not necessarily invalidate previously gen-
erated parameters if they are not subject to the new attack.

And now for something completely different [30], here is the complete pa-
rameters validation checklist for Anybody:

� Check the Timestamp on the Design and let t0 be the Timestamp’s time.
� Check that the Standardizer did not commit on too many designs, Publicly

verifiable RNGs, and times t3 and t′3 (only one such commitment per security
level is required).

� Check the Commitment on the Design, the Publicly verifiable RNG, and times
t3 and t′3.

� Check the Timestamp on the Commitment and let t2 be the Timestamp’s
time.

� Check that t0 < t3 and t2 < t3.
� Decide whether or not he wants to trust the selected Publicly verifiable RNG.
� Lookup the outcome of the Publicly verifiable RNG between times t3 and t′3

(available from its archive) and extracts the seed using the Seed Extractor.
� Apply the Filtering function to the seed, and check that the obtained Param-

eters match what was expected.

3 Lottery Winning Numbers: a Publicly Verifiable
Entropy Source

There exist many publicly verifiable entropy sources (stock market data, sports
scores, weather data around the world...), but most of them are very hard to
analyze and contain strong correlations, making it difficult to estimate the exact
amount of entropy effectively produced by these sources.

One noticeable exception are national lotteries, which already “solved” the
problem of generating randomness in a trustworthy manner. Many of these lot-
teries even use mechanical drawing machines to perform the drawings in the
presence of observers, sometimes with a live broadcast on national TV. Lotter-
ies are also a very good source of entropy for the following reasons:

– the output is an unbiased selection of m numbers among n,
– the output rate is slow, but reliable (in many countries, there are 1 or 2

draws each week, since many years and for many years to come),
– the output is publicly verifiable at any time since most national lotteries

maintain a public archive of past draws,
– the output is very hard to manipulate (otherwise we would have better things

to do with our millions than writing this article).

One drawback of this entropy source is that it does not output bits, taking us
cryptographers out of our comfort zone. The following sections will suggest a way
to extract randomness from a single lottery draw, to define a Publicly verifiable
RNG from a single-draw lottery (i.e., a lottery that performs at most one draw
per day), and how to increase the entropy throughput by considering several
lotteries at once.

14

3.1 Extracting Entropy from the Winning Numbers of a Lottery
Draw

Consider a lottery draw that consists ofm numbers in a set of n possible numbers.
There are

(
n
m

)
possible outcomes, which is log2

(
n
m

)
bits of entropy. But extracting

exactly t = blog2

(
n
m

)
c independent unbiased bits from each draw is impossible.

The best that can be done to generate t bits is the following:

– convert the draw to an integer x between 0 and
(
n
m

)
− 1,

– if x < 2t, output the t bits of x, otherwise discard this draw.

This last step is required as it is the only way to have a uniformly distributed
sequence of t bits, but it makes it impossible to predict the exact number of
draws that will be necessary to obtain a given number of random bits.

However, as we will see in Section 4, it is somewhat useless to first filter the
output (and lose some entropy) to obtain bits, and then filter these bits again
to get parameters. Instead, we could keep the entropy in the form of integers
and directly use these integers to generate parameters. This way, filtering only
happens once in the end, when trying to match the Security criteria.

In practice, converting a set of winning numbers into an integer will be done
with formula (1). Assume we draw m numbers c1 < c2 < ... < cm, each between
1 and n, then a uniformly distributed index x between 0 and

(
n
m

)
− 1 can be

computed as [27, Theorem L, p.360]:

x =

(
c1 − 1

1

)
+

(
c2 − 1

2

)
+ · · ·+

(
cm − 1

m

)
. (1)

Note. The order in which the numbers are drawn could be taken into account
to increase the amount of entropy extracted from each draw (log2(m!) bits can
be gained), but many lotteries only keep an archive of sorted draws. For this
reason we only look at the unordered set of winning numbers. Also, the order in
which the numbers are drawn is never used to determine the winners. For public
verifiability it seems more natural to tie our entropy strictly to the “winning
condition” and thus to ignore the drawing order.

3.2 Defining a Publicly Verifiable RNG from a Single-Draw Lottery

Given the above discussion, it is easy to define a proper but inefficient Publicly
verifiable RNG, based on one single-draw lottery picking m numbers in a set of
n possible numbers. This Publicly verifiable RNG produces daily entropy:

– If a draw was performed on the considered day, the entropy is extracted as
described in the previous section, producing a random integer x in [0,

(
n
m

)
−1];

– Otherwise, the Publicly verifiable RNG outputs NaN (which means that it
produced no entropy on that day).15

15 If the game rules change at some point, e.g. if m or n change, we simply consider
the new set of rules as a different game. As a consequence, as soon as the new game
rules are live, the Publicly verifiable RNG starts to output NaN forever.

15

National lotteries are certainly a very good verifiable source of entropy, but
they also suffer from a very slow output rate. In France for example there are
three Loto draws per week, each offering 20.86 bits of entropy, that is, 62.58 bits
per week. Table 1 sums up the amount of entropy that can be easily collected
each week from various lotteries around the world.

3.3 Combining Several Single-Draw Lotteries to Increase the
Entropy Throughput

In order to increase the daily entropy produced by the aforementioned Publicly
verifiable RNG, it seems natural to consider the draws from several (single-draw)
lotteries. In that case, many draws may occur on the same day. In order to
properly define the Publicly verifiable RNG, we must specify an order in which
the lotteries should be considered. We suggest to associate a unique identifier
lottery id to each lottery. Once the lotteries are identified as above, one can
easily specify the order (e.g., the alphabetical order).

Thus, a Publicly verifiable RNG based on ` well identified single-draw lotteries
produces, on a given day, an array of ` values, where the i-th value corresponds
to the output of a Publicly verifiable RNG based on the i-th lottery on the list,
implemented as described in the previous section.

3.4 Including Multiple-Draw Lotteries

In practice, some lotteries perform several draws on the same day. However,
these draws are always sequential and clearly identifiable. Thus, one can simply
consider them as draws coming from distinct and uniquely identified single-draw
lotteries. For example, if the lottery lottery id performs two distinct draws
on the same day, one can simply consider these draws as respectively coming
from lotteries lottery id 1 and lottery id 2. This approach enables to include
multiple-draw lotteries in the Publicly verifiable RNG of the previous section.

3.5 Concrete Example

As an example, we consider the following list of lotteries, ordered alphabetically:

1. fr keno 1 (French Keno, noon draw)
2. fr keno 2 (French Keno, evening draw)
3. us powerball (US Powerball)

On the Friday 4th of December 2015, the noon draw of the French Keno was

2-4-7-9-12-13-16-21-23-30-31-32-36-39-42-49-52-57-64-68

The index of this draw given by (1) is

x =

(
2− 1

1

)
+

(
4− 1

2

)
+

(
7− 1

3

)
+ · · ·+

(
68− 1

20

)
= 64324389717285723

https://www.fdj.fr/jeux/jeux-de-tirage/keno/statistiques
https://www.fdj.fr/jeux/jeux-de-tirage/keno/statistiques
http://www.powerball.com/powerball/pb_nbr_history.asp

16

Table 1. List of lotteries around the world, with their corresponding weekly entropy.

Lottery name m n Entropy
Draws Entropy

per week per week

Australian Monday Lotto 6 45 22.95 1 22.95
Australian OZ Lotto 7 45 25.43 1 25.43
Australian Powerball 6 40 21.87 1 21.87
Australian Saturday Lotto 6 45 22.95 1 22.95
Australian Wednesday Lotto 6 45 22.95 1 22.95

Belgian Lotto 6 45 22.95 2 45.90

Brasilian Dupla-Sena 6 50 23.92 2 47.84
Brasilian Lotofácil 15 25 21.64 3 64.92
Brasilian Mega-Sena 6 60 25.57 2 51.14
Brasilian Quina 5 80 24.51 6 147.06

Canadian Daily Keno (Midday Draw) 20 70 57.16 7 400.12
Canadian Daily Keno (Evening Draw) 20 70 57.16 7 400.12
Canadian Loto 649 (Main Draw) 6 49 23.73 2 47.46
Canadian Loto Max (Main Draw) 7 49 26.35 1 26.35
Canadian Lottario 6 45 22.95 1 22.95

Swiss Loto 6 42 22.32 2 44.64

German Euro Jackpot 5 50 21.01 1 21.01
German Keno 20 70 57.16 7 400.12
German Loto 6 49 23.73 2 47.46

Spanish Bonoloto 6 49 23.73 6 142.38
Spanish El Gordo 5 54 21.59 1 21.59
Spanish La Primitiva 6 49 23.73 2 47.46

European Euro Millions 5 50 21.01 2 42.02

French Keno (Noon) 20 70 57.16 7 400.12
French Keno (Evening) 20 70 57.16 7 400.12
French Loto 5 49 20.86 3 62.58

Italian SuperEnalotto 6 90 29.21 3 87.63

Mauritius Loto 6 40 21.87 1 21.87

Dutch Lotto (Standard 1st trecking draws) 6 45 22.95 1 22.95

New Zealand Keno (1st daily draw - 10AM) 20 80 61.61 7 431.27
New Zealand Keno (2nd daily draw - 1PM) 20 80 61.61 7 431.27
New Zealand Keno (3rd daily draw - 3PM) 20 80 61.61 7 431.27
New Zealand Keno (4th daily draw - 6PM) 20 80 61.61 7 431.27
New Zealand Lotto 6 40 21.87 2 43.74

UK Health Lottery (Saturday £1 draw) 5 50 21.01 1 21.01

US Hot Lotto 5 47 20.54 2 41.08
US Mega Millions 5 75 24.04 2 48.08
US NY Cash 4 Life 5 60 22.38 2 44.76
US NY Lotto 6 59 25.42 2 50.84
US Powerball 5 69 23.42 2 46.84
US Wild Card 5 33 17.85 2 35.70

Total ≈ 5189

https://www.ozlotteries.com/lotto-results/monday-lotto
https://www.ozlotteries.com/lotto-results/oz-lotto
https://www.ozlotteries.com/lotto-results/powerball
https://www.ozlotteries.com/lotto-results/saturday-lotto
https://www.ozlotteries.com/lotto-results/wednesday-lotto
https://www.loterie-nationale.be/fr/nos-jeux/lotto/resultats
http://www.loterias.caixa.gov.br/wps/portal/loterias/landing/duplasena/
http://www.loterias.caixa.gov.br/wps/portal/loterias/landing/lotofacil/
http://www.loterias.caixa.gov.br/wps/portal/loterias/landing/megasena/
http://www.loterias.caixa.gov.br/wps/portal/loterias/landing/quina/
http://www.olg.ca/lotteries/viewPastNumbers.do
http://www.olg.ca/lotteries/viewPastNumbers.do
http://www.olg.ca/lotteries/viewPastNumbers.do
http://www.olg.ca/lotteries/viewPastNumbers.do
http://www.olg.ca/lotteries/viewPastNumbers.do
https://jeux.loro.ch/FR/1/SwissLoto#action=game-history
https://www.lotto.de/de/ergebnisse/eurojackpot/archiv.html
https://www.lotto.de/de/ergebnisse/keno/archiv.html
https://www.lotto.de/de/ergebnisse/lotto-6aus49/archiv.html
http://www.loteriasyapuestas.es/es/bonoloto
http://www.loteriasyapuestas.es/es/gordo-primitiva
http://www.loteriasyapuestas.es/es/la-primitiva
https://www.fdj.fr/jeux/jeux-de-tirage/euromillions/statistiques/
https://www.fdj.fr/jeux/jeux-de-tirage/keno/statistiques
https://www.fdj.fr/jeux/jeux-de-tirage/keno/statistiques
https://www.fdj.fr/jeux/jeux-de-tirage/loto/statistiques
http://www.superenalotto.com/archivio-estrazioni.asp
http://www.loterienationale.mu/fr/tirages-et-archives
https://www.lotto.nl/lotto/trekkingenIndex.html
https://mylotto.co.nz/index.php/keno/results/
https://mylotto.co.nz/index.php/keno/results/
https://mylotto.co.nz/index.php/keno/results/
https://mylotto.co.nz/index.php/keno/results/
https://mylotto.co.nz/lotto/results/
https://www.healthlottery.co.uk/results/draw-history
http://www.powerball.com/hotlotto/hl_number_history.asp
http://www.megamillions.com/winning-numbers/search
https://data.ny.gov/Government-Finance/Lottery-Cash-4-Life-Winning-Numbers-Beginning-2014/kwxv-fwze
http://nylottery.ny.gov/wps/portal/Home/Lottery/home/your+lottery/winning+numbers/lottopastwinning+numbers
http://www.powerball.com/powerball/pb_nbr_history.asp
http://www.powerball.com/wildcard/wc_numbers.asp

17

Similarly, one can check that the evening draw16 (i.e. from lottery fr keno 2)
leads to the index 55537728386360944 and that the US Powerball did not perform
any draw on that day. Those results, together with those of the two following
days, made the Publicly verifiable RNG produce the following outputs between
the 4th and the 7th of December 2015:

[64324389717285723, 55537728386360944, NaN]

[103119038557241541, 1139614140761531, 9826130]

[140625738347277372, 155799364658105184, NaN]

[94173221000906309, 83857548427108173, NaN]

4 Generating a Seed from a Publicly Verifiable RNG
Based on Several Multiple-Draw Lotteries

In this section, we describe how to generate a random seed, containing at least
k bits of entropy, using the Publicly verifiable RNG based on ` uniquely identified
lotteries introduced in Section 3. Note that it suffices to draw the seed uniformly
at random in [0, L− 1], where L ≥ 2k (this exactly produces log2(L) ≥ k bits of
entropy). Since k can be arbitrarily large, we need a method that uses several
Publicly verifiable RNG outputs, i.e., a method combining several lottery draws.

4.1 Combining Several Lottery Draws

Each lottery has its own set of rules: the California lottery Powerball picks 5
numbers from 1 to 69, the French Loto picks 5 from 1 to 49, the Belgian Lotto
picks 6 from 1 to 45, etc. Let us consider a ordered array of r lottery draws, where
the ith draw is an unbiased selection of mi numbers among ni. We apply (1) on
each draw in order to obtain an array of indices [x1, . . . , xr], where xi is uniformly
distributed in [0, Li − 1] for Li =

(
ni

mi

)
. Considering the Li’s as a mixed radix

numeral system [41], a unique representative of [x1, . . . , xr] in [0,
∏r
i=1 Li − 1]

can be obtained by the following one to one mapping:

[0, L1−1]×· · ·× [0, Lr−1] −→ [0,

r∏
i=1

Li−1] (2)

(x1, . . . , xr) 7−→ xr+xr−1 ·Lr+xr−2 ·LrLr−1 + · · ·+x1 ·
r∏
i=2

Li .

As this is a one to one mapping, if the r inputs are indeed uniformly distributed
over their domain, the output will also be uniformly distributed over its do-
main. Combining several lottery draws makes it possible to obtain uniformly
distributed numbers of arbitrarily long size.

16 2-5-11-12-15-17-20-24-32-45-48-52-53-54-57-61-62-63-66-67

18

Table 2. An ordered list of draws based on the Publicly verifiable RNG of Section 3.5.

r Draw Id m n Li Index

1 2015-12-04 fr keno 1 20 70
(
70
20

)
64324389717285723

2 2015-12-04 fr keno 2 20 70
(
70
20

)
55537728386360944

3 2015-12-05 fr keno 1 20 70
(
70
20

)
103119038557241541

4 2015-12-05 fr keno 2 20 70
(
70
20

)
1139614140761531

5 2015-12-05 us powerball 5 69
(
69
5

)
9826130

4.2 Generating a Seed of at Least k Bits of Entropy using the
Publicly Verifiable RNG

Since the Publicly verifiable RNG we consider is based on ` well specified lotteries,
it is easy to evaluate the exact amount of entropy available during any time
period. Given a starting date t3 and the minimum amount k of entropy required,
one can thus determine an exact list of r draws to extract from the Publicly
verifiable RNG in order to achieve at least this amount of entropy. In order to
use (2) to combine those draws, their order must be fully specified. Doing so will
produce a uniformly distributed random integer in [0, L−1], where L =

∏r
i=1 Li,

and log2(L) ≥ k.

4.3 Concrete Example

We consider the (ordered) list of draws of Table 2 that one can extract from the
Publicly verifiable RNG of the example given in Section 3.5. Those draws allow

to collect more than k = 252 bits of entropy since L =
(
70
20

)4(69
5

)
≈ 2252.09. The

random seed obtained by means of (2) in this case is

3066910947619697771843263013622803508998381833690546602370747350759772500737.

4.4 The Last Draw Attack

The output of our algorithm is a set of cryptosystem parameters that might end
up being used to secure millions of exchanges, it is thus necessary to assume that
an adversary trying to manipulate this parameter selection process could have
a lot of power17:

17 Quoting Philip Rogaway [34]: “At this point, I think we would do well to put our-
selves in the mindset of a real adversary, not a notional one: the well-funded in-
telligence agency, the profit-obsessed multinational, the drug cartel. You have an
enormous budget. You control lots of infrastructure. You have teams of attorneys
more than willing to interpret the law creatively. You have a huge portfolio of zero-
days. You have a mountain of self-righteous conviction. Your aim is to Collect it All,
Exploit it All, Know it All.”

19

– computational power to perform expensive computations in a short time,
– a way to influence certain lottery draws,
– some advanced cryptographic knowledge, giving him “0-day” attacks on cer-

tain classes of parameters satisfying all Security criteria.

Of course, even the most powerful organizations on the planet have some limi-
tations, so we make the assumption that:

– it is impossible for the adversary to manipulate all lottery draws simultane-
ously,

– 0-day attacks only allow to break a fraction of the Parameter space, typically
one set of parameters in a thousand, or in a million.18

Still, even with these assumptions, it could be possible for a powerful adversary
to force the selection of weak parameters using what we call the last draw attack.

The seed extracted from the lottery draws is the only source of entropy in the
parameter generation. The instantiation of the PRNG and the filtering functions
are deterministic, so a given seed will always give the same parameters. Because
of this, the last draw used to generate this seed plays a special role: after it,
no more entropy will enter the system, so anyone able to manipulate this last
draw can knowingly influence the parameter selection output. Just after the next
to last draw is made public, an adversary can start computing the parameters
that would be output by each possible value of the last draw. With a 0-day
attack applying to a non-negligible fraction of sets of parameters, there is a high
probability that some draw values yield a set of weak parameters. The adversary
can then force the output of the last lottery draw and force the whole process
to output parameters he can attack.

There are several solutions to overcome this attack, the best one will depend
on the usage scenario:

– Simultaneous lottery draws. The simplest solution to avoid last draw attacks
is to have multiple last draws happening exactly at the same time. This
way, an adversary needs to manipulate all draws simultaneously to “choose”
the output parameters. If we assume manipulating several lottery draws
from different countries to be impossible for the adversary, this solution
could work. Unfortunately all lottery draws from Table 1 seem to happen at
distinct times, making it impossible to rely on this solution.

– Using a slow function. This idea was first presented in [28] but can be
adapted to our lottery setting. If the filtering function or the seed extractor
relies on a slow function that is guaranteed to take more than 10 minutes to
compute (even on the most advanced hardware), then if the last two lottery
draws occur less than 10 minutes apart, last draw attacks are impossible.
However, if the last lottery draws occur several hours apart, or if resistance

18 A similar adversary, named Jerry, was considered by Bernstein et al. in [7] and is
assumed to have 0-day attack on a fraction of, say, ≈ 2−15 of the Parameter space.

20

to the collusion of the last few lotteries is needed, it might be necessary to
use a function that takes several hours or several days to compute, which
is not very practical. Also, depending on the effective drawing dates chosen
by the Standardizer, one would have to modify the Filtering function choice
accordingly, which is something we want to avoid!

Also, it is important that this slow function does not discard any entropy
from the Publicly verifiable RNG, or does so in a “provably secure way”. Oth-
erwise, an attack on the slow function itself might allow to decrease the
influence of the entropy from the last draws, possibly allowing the manipu-
lation of the very first draws to be sufficient for an adversary.

– Using a commitment. When committing on the set of lottery draws that will
constitute the seed, the standardizer could also commit on the hash of a ran-
dom value (to be made part of the seed), keeping this random value hidden
until after the last draw. As long as the standardizer and the organization
operating the last lottery do not collude, the last draw attack is impossible.
Of course, for the output parameter set to be convincing, it should be clear
that the standardizer did not collude with the lottery organizations, and this
approach is only valid when the standardizer is trusted. This is typically the
case when a person wants to generate parameters for his personal use, or
when a company generates parameters for internal use. This solution also
suits situations where a client outsources the generation of a Cryptosystem
parameters to a company: the client can himself commit on a nonce, and
reveal it to the company once the full entropy has been extracted from the
Publicly verifiable RNG.

– Limiting the entropy of the last lottery draws. This last solution relies on
the assumption that a 0-day attack may affect a non-negligible part of the
possible parameters, but not a large proportion. If the last lottery draw
introduces only 1 bit of entropy, then the last draw attack can only try 2
sets of parameters, thus requiring a 0-day attack affecting one half of the
possible parameters. Such an attack seems improbable. However, we must
make sure that next-to-last-draw attacks are not possible: if the adversary
can manipulate the next to last draw so that both possible outputs of the
last draw lead to weak parameters it is also a problem, so we need to add a
little more than a single bit of entropy after the last draw. The solution is
thus to add (after the last draw) a series of, say, 20 or 30 lottery draws from
each of which a single bit of entropy is extracted. We call those extra bits
of entropy lone bits. If the 0-day attack affects a fraction 1

N of parameters,
the adversary has to manipulate logN lone bits, and thus, logN lotteries
(which we assumed was impossible).

In the following section, we present a way of properly integrating lone bits in the
seed computation. This method is the one we will use in Section 6 to generate
the Million Dollar Curve.

21

Table 3. An ordered list of 3 more draws based on the Publicly verifiable RNG of
Section 3.5.

r Draw Id m n Li Index Lone bit

6 2015-12-06 fr keno 1 20 70
(
70
20

)
140625738347277372 0

7 2015-12-06 fr keno 2 20 70
(
70
20

)
155799364658105184 0

8 2015-12-07 fr keno 1 20 70
(
70
20

)
94173221000906309 1

4.5 Properly Integrating Lone Bits to the Seed

We first note that when using (2) to combine several lottery draws, the last
draw influences the least significant bits of the seed. As we will see in the next
section, because of the way we consume the seed to generate Blum-Blum-Shub
parameters, some entropy may be lost among those least significant bits. This
is a good thing for the last draw, since this decreases the power of a potential
last draw attack. This is however a undesirable thing for the lone bits, since we
need to maintain all their entropy to prevent a next-to-last draw attack. As a
consequence, we suggest to add the lone bits in the most significant bits of the
seed.

We start from a seed s ∈ [0, L − 1] computed using (2), to which we intend
to integrate `′ lone bits coming from `′ additional sorted lottery draws. We
first compute the `′ indexes of the lottery draws using (1) and let b1, . . . , b`′

denote their respective least significant bit (i.e., the modulo 2 reduction of their
respective index). We then integrate them to the seed as follows:

seed = seed + L ·
`′∑
i=1

bi · 2i−1. (3)

If we add the two draws of December 6 and the first draw of December 7
from the Publicly verifiable RNG given in Section 3.5 to the list given in Table 2,
we can obtain three lone bits, as shown in Table 3. Integrating these lone bits
to the seed of the example of Section 4.3 using (3), we obtain the following final
seed value, containing more than 252 + 3 = 255 bits of entropy:

33940777946199987906401602067598599942417026078673887024082915151377807980289.

5 Entropy Spreading Using Blum Blum Shub

As we have seen in the previous sections, by combining easily accessible lottery
draws from all over the world we reach an output rate of about 5,000 bits of en-
tropy per week. This is enough entropy to generate almost any set of parameters
as the Parameter space defined by the Security criteria will seldom contain more
than 22000 elements. Yet, we should distinguish between two kinds of Security
criteria:

22

– “simple” Security criteria, which define a Parameter space in which it is easy
to directly sample elements uniformly at random;

– “complex” Security criteria, which make direct uniform sampling impossi-
ble, forcing to iteratively query the Publicly verifiable RNG for parameters,
discarding those that do not meet all the Security criteria.

A scheme with only “simple” Security criteria can be instantiated using the output
of the Publicly verifiable RNG directly. However, for most cryptographic schemes,
there will be at least a few “complex” Security criteria requiring to discard a
huge proportion of this entropy. In that situation, it could take many weeks to
generate appropriate parameters.

Instead of waiting so long, we propose to use this publicly verifiable entropy
to instantiate a Blum Blum Shub [11,12] PRNG (abbreviated BBS from now
on), and then use it to deterministically generate very long sequences of bits.
Wasting bits outputted by the PRNG is then no longer an issue, but our use of
BBS must ensure that if enough entropy is given for the instantiation, then the
output parameters are uniformly distributed in the Parameter space or, at least,
that the output distribution of parameters is computationally indistinguishable
from a uniform distribution.

5.1 Uniformity of Parameters Output by the Blum Blum Shub
PRNG

The BBS generator works as follow:

1. pick two strong strong primes19 p and q and compute N = pq,
2. pick a random s ∈ Z∗n \ {1} and compute an initial value s0 = s2 mod N ,
3. generate bits by iterating the function si = s2i−1 mod N and then output

the least significant bit of si, for i ≥ 1.

It is proven that the output of this generator is indistinguishable from a ran-
dom sequence of bits as long as the quadratic residuosity assumption20 holds.
In our context, what matters is that parameters are uniformly distributed in
the Parameter space. Now, suppose there is an algorithm A which, when given
a sequence rand of uniformly distributed independent bits, outputs a set of pa-
rameters uniformly distributed in the Parameter space. Now run algorithm A
with a sequence BBS of bits output by BBS. If one is able to distinguish pa-
rameters output by A(rand) from parameters output by A(BBS), then this is
also a distinguisher for the output of BBS, meaning it gives an advantage when
deciding quadratic residuosity. As a consequence, for any p and q large enough

19 A prime p is a strong strong prime if all three of p, (p − 1)/2 and (p − 3)/4 =
((p− 1)/2− 1)/2 are primes. We select p and q as strong strong primes in order to
maximize the cycle length. Indeed, recall that the BBS generator is cyclic of order
λ(λ(N)) = lcm(φ(p− 1), φ(q− 1)) where λ is Carmichael’s function and φ is Euler’s
totient function. In particular, when p = 4p′ + 3 and q = 4q′ + 3 are strong strong
primes, the cycle is maximal and equal to 2p′q′.

20 That is, deciding if for a given y < N there exists z < N such that y = z2 mod N .

23

for the quadratic residuosity problem to be computationally unfeasible, BBS can
be used to generate uniformly distributed parameters when s contains enough
entropy.

Now if the distribution is uniform when p and q are unknown, this distribution
does not change when p and q are revealed.21 Therefore, the parameters are
uniformly distributed, even if p and q are known.

Instantiating BBS using the publicly verifiable RNG. When using the Publicly
verifiable RNG to directly instantiate a scheme, the amount of entropy to ex-
tract depends on the length of the parameters of that scheme. In the case the
Publicly verifiable RNG is used to instantiate BBS, it is rather the hardness of
the quadratic residuosity problem that drives the amount of required entropy.
As we have seen, one can uniformly pick parameters from any fixed and large
enough p and q and an initial value s0 with enough entropy. So we could pick p
and q for you, compute N and publish it. But this might look a little suspicious!
Instead, we propose to also pick p and q from the Publicly verifiable RNG. To
be conservative, we suggest to always consider at least 2048-bit strong strong
primes and an s0 of size log2(N).

5.2 Inefficiently Choosing Random Parameters for BBS

In this section, we describe a deterministic but inefficient algorithm that takes
as input a seed (e.g., generated as in Section 4) and outputs two strong strong
primes p and q, and an appropriate initial value s0 for BBS. When aiming at
k-bit primes, seed should contain at least 4k bits of entropy. The algorithm is
the following:

1. Let pstart = seed mod 2k and let p be the smallest strong strong prime p
greater than 22048 + pstart. Shift seed by k bits to the right.

2. Let qstart = seed mod 2k and let q be the smallest strong strong prime p
greater than 22048 + qstart. Shift seed by k bits to the right.

3. Let s = seed mod N where N = pq. While s /∈ Z∗N \ {1}, replace s by
s+ 1 mod N . Let s0 = s2 mod N .

Obviously, choosing p and q as the next strong strong prime from a random
starting point does not lead to uniformly distributed p and q. Indeed, strong
strong primes are not equally spaced, so some values of p and q have a slightly
higher probability of being picked. However, as any value of p and q will allow
to pick parameters uniformly, we simply need the choice of p and q to retain as
much entropy as possible, which is the case here.

21 Quadratic residuosity becomes easy to decide when p and q are known, so when
using BBS as a cryptographically secure PRNG, p and q should be kept secret.

24

5.3 Efficiently Choosing Random Parameters for BBS

Although we do not really care about the efficiency of the algorithm generating p
and q (since it will essentially be used once), there exist well known methods for
generating primes much more efficiently. We suggest to use an approach similar
to the one suggested in [26, Section 7.2]. Since our only source of entropy is the
seed, we cannot directly use the algorithms of [26] since the amount of entropy
they require to generate primes is not known in advance. Yet, it is easy to adapt
those algorithms to make them entropy-friendly.

In what follows, we describe how to generate strong strong prime generators,
i.e., primes p′ such that p = 4p′ + 3 is a strong strong prime (and thus all three
of p′, 2p′ + 1 and 2(2p′ + 1) + 1 = 4p′ + 3 are prime).

We first denote by P = [p1, p2, . . . , pf] the list of the f first primes (starting
with p1 = 2), by Π be the product of those first primes, and let

CRT : ZΠ −→ Zp1 × · · · × Zpf
c 7−→ (c mod p1 , . . . , c mod pf)

the CRT isomorphism. For c ∈ ZΠ , we note that c, 2c+ 1, and 2(2c+ 1) + 1 are
invertible modulo Π (and thus, coprime with Π) if and only if ci = c mod pi,
2ci+1, and 2(2ci+1)+1 are invertible modulo pi, for all i = 1, . . . , f . We denote
by Ci the list of all ci ∈ Zpi such that ci, 2ci+ 1, and 2(2ci+ 1) + 1 are invertible
modulo pi. For example, p3 = 5 and C3 = [1, 4]. Let C be the product of the
cardinalities of the Ci’s. Eventually, C will correspond to the number of strong
strong prime generator candidates to test for primality.

Starting with a seed containing at least 2 log2(C) + 2 log2(Π) bits of entropy,
the following algorithm provides an efficient way to choose two strong strong
primes p and q of size close to k bits, and an initial value s0 for BBS:

1. Determine f such that Π/pf ≤ 2k−2 < Π. Precompute the Ci’s and C.
2. For i = 1, . . . , f , let λi = seed mod #Ci and seed = (seed− λi)/#Ci.
3. Loop:

3.1. Let c = CRT−1(C1[λ1], . . . , Cf [λf]).
3.2. If c is a strong strong prime generator of at least k−2 bits, set p = 4c+3

and break out of the loop.
3.3. Set i = 1 and loop:

– Replace λi by (λi + 1) mod #Ci. If λi 6= 0, break out of the loop,
otherwise, replace i by (i+ 1) mod f .

4. Repeat steps 2 to 4 to pick a second (independent) strong strong prime q
and compute N = pq, the BBS modulus.

5. Let s = seed mod N where N = pq. While s /∈ Z∗N \ {1}, replace s by
s+ 1 mod N . Let s0 = s2 mod N .

For the same reason as the inefficient algorithm of the previous section, this
algorithm obviously produces slightly non-uniform BBS parameters. As we have
seen, this is not an issue as this bias does not directly impact the uniformity of

25

the final parameter generation. However (again, like in the inefficient algorithm),
this algorithm looses some of the seed entropy among its least significant bits.
Indeed, flipping the least significant bit of the seed only influences the value of λ3
(since, for primes 2 and 3, we have #C1 = #C2 = 1, and for prime 5, #C3 = 2).
Moreover, this λ3 is the first one to be incremented at step 3.3 of the algorithm.
As a consequence, in case the first candidate obtained from the seed is not a
strong strong prime (which is highly likely), the final output is not influenced at
all by the least significant bit of the seed.

The same applies, with lower probabilities, to the other least significant bits
of the seed. This is the reason why we chose to integrate the last draw (of which
we want to minimize the impact) to the least significant bits of the seed, and the
lone bits to the most significant bits of the seed.

5.4 Concrete Example

Assume we want to generate BBS parameters with strong strong primes of 64
bits at least. The smallest list of the first primes leading to Π > 264−2 contains
f = 16 primes and is

P = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53].

In that case, Π = 32589158477190044730 ≈ 264.82 whereas the list of the first
15 primes would lead to a product Π ′ = Π/53 = 614889782588491410 ≈ 259.09.
At this point, the algorithm precomputes C1, . . . , C16, where Ci contains the list
of ci ∈ Zpi such that ci, 2ci + 1, and 2(2ci + 1) + 1 are all invertible modulo pi.
Considering the first seven primes for example, we have

C1 = [1], C2 = [2], C3 = [1, 4], C4 = [2, 4, 5, 6], C5 = [1, 3, 4, 6, 7, 8, 9, 10],
C6 = [1, 2, 3, 4, 5, 7, 8, 10, 11, 12], C7 = [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16].

Computing all the Ci’s leads to C =
∏16
i=1 #Ci = 237320116633600000, which

corresponds to the number of strong strong prime generator candidates. We
therefore require from the seed that it contains at least log2(C) ≈ 58 bits of en-
tropy for drawing p, 58 more bits of entropy for q, and 128 bits for drawing s, for
a total of 244 bits. Since the seed obtained in the example of Section 4.5 contains
more than 255 bits of entropy, we can use it to proceed with the algorithm.

Since #C1 = #C2 = 1, then λ1 = λ2 = 0 for any seed. Since #C3 = 2 and
the seed we consider is odd, we have λ3 = 1 and we must replace the seed by
(seed− 1)/2, which is

16970388973099993953200801033799299971208513039336943512041457575688903990144.

Reducing this new seed modulo #C4 = 4 gives λ4 = 0. Proceeding similarly with
the remaining first primes, one can easily check that

[λ1, λ2, . . . , λ16] = [0, 0, 1, 0, 0, 2, 3, 5, 4, 9, 22, 20, 22, 35, 33, 26]

and that the remaining seed is

26

143016860212492502219096979800813655175448735072713214424738.

These indexes lead to the first strong strong prime generator candidate:

c = CRT−1(C1[0], C2[0], C3[1], C4[0], C5[0], C6[2], C7[3], . . . , C14[35], C15[33], C16[26])

= CRT−1(1, 2, 4, 2, 1, 3, 4, 7, 6, 10, 25, 22, 24, 38, 36, 28)

= 4200766960142310119 .

Since

c = 26573× 541097× 292154699,

2c+ 1 = 5791× 6818837× 212762317, and

4c+ 3 = 103× 1061× 3664103× 41963171

one can see that, as expected, neither c, 2c + 1, nor 4c + 3 is divisible by any
of the 16 first primes. Yet, this first candidate obviously is not a strong strong
prime generator and the indexes must be updated. Incrementing cyclicly the λi’s
leads to the second set of indexes

[λ1, λ2, . . . , λ16] = [0, 0, 0, 1, 0, 2, 3, 5, 4, 9, 22, 20, 22, 35, 33, 26],

from which we deduce a new strong strong generator candidate

c = 21892024419188334401 = 199× 683× 161069067292453.

Once again, this candidate is not a strong strong generator either, and we are
required to iterate again.

After a few more bad candidates, we obtain the following 63rd set of indexes:

[λ1, λ2, . . . , λ16] = [0, 0, 1, 3, 7, 2, 3, 5, 4, 9, 22, 20, 22, 35, 33, 26]

leading to the first strong strong generator candidate c = 7586653555175042039
such that c, 2c+ 1, and 4c+ 3 are all primes. The algorithm thus chooses

p = 4c+ 3 = 30346614220700168159.

Proceeding similarly with the remaining seed, one can obtain

q = 96890065747994265119

after 27 bad candidates, and the remaining seed is

602632689723885142589612392807170392133238.

Reducing this seed modulo N = pq gives

s = 2814458521063106164645463882061050365354

and thus

s0 = s2 mod N = 2458788480384706978120246496438377798377.

Using the BBS generator with these N and s0 yields the bit sequence

010010100010011100000101011101111000100001010001010001011101...

27

6 Million Dollar Curve

In this section, we first act as a Designer and give:

– A Cryptosystem: the elliptic curve Diffie–Hellman (ECDH),
– An exhaustive list of Security criteria (which implicitly defines a Parameter

space),
– A Filtering function given as an algorithm.

We then continue our concrete example from previous sections (where we acted
as a Standardizer, and where we generated a seed) and illustrate how to use
the seed previously obtained to instantiate a toy Cryptosystem which, of course,
should not be used for cryptographic purposes. Indeed, the Publicly verifiable
RNG we used relies on too few lottery draws, which were moreover chosen after
their draw date.

6.1 The Designer Part

The cryptosystem. The Cryptosystem we consider is elliptic curve Diffie–
Hellman (ECDH). Defining parameters for this cryptosystem consists in defining
a specific elliptic curve and a base point on this curve.

The security criteria. This section provides an exhaustive list of the Security
criteria that we want the Million Dollar Curve to meet. These criteria include all
those listed on SafeCurves [8].

Underlying field. Recent advances (such as [25]) confirmed that elliptic curve
over non prime fields might present a risk. We choose to restrict to prime fields.
As we aim for a security level of 128 bits, we further restrict to 256-bit primes, i.e.,
primes in [2255, 2256) . We shall denote by p this 256-bit prime and furthermore
require that p ≡ 3 (mod 4) (see the the discussion on twist security below).

Curve in Edwards form. Restricting to curves that can be written in Edwards
form [19] is not a security criterion per se. However, as shown in [9], Edwards
curves have nice properties that make them particularly well suited for crypto-
graphic purposes, including an efficient complete addition formula. Restricting
to these curves is unlikely to cause any security issue since about 1/4 of all (iso-
morphism classes of) elliptic curves over non-binary finite field are birationally
equivalent over the original field to an Edwards curve [9]. Given the finite field
Fp, an Edwards curve can be defined with a single parameter d ∈ Fp \ {0, 1}, by
the equation x2 + y2 = 1 + dx2y2. For the addition formula to be complete, d
should furthermore not be a square in Fp.

Point compression. Since we restrict to non-square d’s, it is also possible to effi-
ciently compress points exchanged during the Diffie–Hellman protocol by sending
only the y coordinate of each point. This is shown in Theorem 1 in Appendix A.
This is an interesting feature in some contexts where bandwidth or storage is
constrained.

28

Point count. An Edwards curve always has a point of order 4, so the number
of points #E(Fp) is always a multiple of 4. The base point on the curve should
generate a large subgroup of prime order. We thus impose that the number
of points on the curve to be of the form 4q, where q is a prime. The average
complexity of the rho method (using negation) for computing discrete logarithms
is 0.886

√
q group operations [8,21]. We impose the same restriction on q than

SafeCurves, namely that q > 2200. From the Hasse bound |#E(Fp)− (p+ 1)| ≤
2
√
p, one can see that this condition is always verified when p is of 256 bits.

Base point. The base point should generate a large prime order subgroup of the
curve. We impose that its order is q.

Anomalous curve attack. We require q 6= p to avoid attacks using additive
transfer. This criterion is always verified for Edwards curve.22

Embedding degree. The ECDLP problem can be converted into a DLP problem
in the finite field Fpm , where m is the embedding degree of the curve, i.e., the
smallest integer m such that pm ≡ 1 (mod q). Thus ensuring that m ≥ 20 should
be enough. Like SafeCurves [8] and Brainpool [1], we choose the overkill criteria
m > (q − 1)/100.

CM field discriminants. Let t = p + 1 − #E(Fp) = p + 1 − 4q be the trace of
the curve and s2 be the largest square dividing t2 − 4p then (t2 − 4p)/s2 is a
square-free negative integer. Define D as (t2 − 4p)/s2 if (t2 − 4p)/s2 mod 4 = 1,
otherwise as 4(t2 − 4p)/s2. We require |D| ≥ 2100.

Twist security. We impose the same security criteria on the quadratic twist of
the curve:

– Point count: the twist should have a number of points of the form 4q′, where
q′ is prime. Note this cannot happen when p ≡ 1 (mod 4), which is the
reason why we restricted to primes such that p ≡ 3 (mod 4).

– Anomalous curve attack: we require q′ 6= p to avoid attacks using additive
transfer. Just as the q 6= p criterion, this criterion is automatically verified.

– Embedding degree: the embedding degree of the twist should be at least
(q′ − 1)/100.

The Filtering Function. Starting with the BBS parameters selected by means
of the algorithm of Section 5.3, we use the following algorithm to output the
parameters of the Cryptosystem that meets all the Security criteria:

1. Given a seed, use the algorithm from Section 5.3 to initialize a BBS generator.
2. Prime field selection loop:

22 Let #E(Fp) = c · q, where q is the large subgroup order and c is the cofactor (c = 4
in our case). From the Hasse bound, q lives in an interval of length 4

√
p/c around

(p+ 1)/c. For c ≥ 2, this implies that q 6= p.

29

2.1. Generate 253 bits b1, b2 . . . b253 using BBS and let

p = 2255 + 3 +

253∑
i=1

bi · 2255−i.

2.2. If p is prime, break free [31] of the loop.
3. Curve selection loop:

3.1. Generate 256 fresh bits b1, b2 . . . b256 using BBS and let

d =

256∑
i=1

bi · 2256−i.

3.2. If d = 0 or d ≥ p, loop (i.e., go back to step 3.1).
3.3. If d is a square modulo p, loop.
3.4. Compute the cardinality #E of the Edwards curve E over Fp defined by

d. If q = #E
4 is not prime, loop.

3.5. Compute the cardinality23 #E′ of the twist E′ of E. If q′ = #E′

4 is not
prime, loop.

3.6. If q = p or q′ = p, loop.
3.7. Compute the embedding degree m of E(Fp). If m ≤ b q−1100 c, loop.

3.8. Compute the embedding degree m′ of the twist of E(Fp). If m′ ≤ b q−1100 c,
loop.

3.9. Compute the CM field discriminant D. If |D| < 2100, loop.
4. Base point selection loop:

4.1. Generate 256 bits b1, b2 . . . b256 using BBS and let

y =

256∑
i=1

bi · 2256−i.

If y = 0 or y = 1, loop.

4.2. Compute u = 1−y2
1−dy2 in Fp. If u(p−1)/2 mod p = −1, loop.

4.3. Let x = u(p+1)/4 mod p and let Q = 4(x, y). If Q = (0, 1), loop.
5. return the order p of the underlying field, the parameter d of the Edwards

curve E(Fp), and the base point Q of prime order #E/4.

6.2 Concrete Toy Example: The Two Cents Curve

We continue the example of Section 5.4 where we obtained the following BBS
parameters:

N = 2940285447072657041298857494730928145921, and

s0 = 2458788480384706978120246496438377798377.

The 253 first bits generated by BBS are

23 Note that #E′ = 2p+ 2−#E.

30

01001010001001110000010101110...11011101110010100000111001110111

which yields the following prime candidate
74666092399662778926724306687629517693968155962635902532670126359902744492511.

This candidate being divisible by 3, we need to iterate. After 27 iterations, we
obtain:
p = 86971348540945673904434287476823722535004446162803825536662439725548940844351.

After finding p, the internal state of BBS is
s27×253 = 2471429559234299208426766484545624633011.

Proceeding with the algorithm we obtain the following candidates for d:

Candidate
d

Step
number failed

1 83752311210909978. . . 1882163619 3.4
2 60262627348904122. . . 9394767349 3.4
3 60238149156736441. . . 3400031922 3.3
4 69441333679866912. . . 1816186410 3.4
5 949525674280108. . . 3073909789 3.3
...

...
...

10 89860366267826151. . . 2358172684 3.2
...

...
...

413 9474153613400913. . . 3119639152 3.5
...

...
...

3397 65281261218558381. . . 0956875702 None

After 3396 bad candidates, the algorithm generates the following candidate:
d = 65281261218558381007530701219655286547670469638420607719467441314230956875702.

The cardinality of the curve is
86971348540945673904434287476823722534967224044331019917836218005628499712052

which is of the form 4q, where q is the following prime:
q = 21742837135236418476108571869205930633741806011082754979459054501407124928013

The cardinality of the twist is
86971348540945673904434287476823722535041668281276631155488661445469381976652

which is of the form 4q′, where q′ is the following prime:
q′ = 21742837135236418476108571869205930633760417070319157788872165361367345494163

The respective embedding degrees of the curve and of the twist are
21742837135236418476108571869205930633741806011082754979459054501407124928012

and
21742837135236418476108571869205930633760417070319157788872165361367345494162,

which are larger than (q−1)/100 and (q′−1)/100. The CM field discriminant is
-86624977015044779581041676001891300699078217650870227091253258368122415021851

which is larger than 2100. Finally, the algorithm finds the base point Q = (x, y)
where x is
x = 46614944771499366088681421757095000480381187754753072990243667161434344372807
and y is
y = 83602741550454853195630494082194571361191761423877114236145805560031459972063.

31

6.3 The Million Dollar Curve

We plan to apply the exact same methodology as for the Two Cents Curve to
generate the Million Dollar Curve. The only differences are:

– We will use all the lotteries listed in Table 1 to increase resistance to collu-
sions.

– We will use primes of 2048 bits (or more) in BBS.
– We will properly follow the methodology of Section 2.3 and thus, commit on

lottery draws before the drawing date.

Since the seed will need to contain more than 8000 bits of entropy, we expect to
require about 2 weeks of lottery draws. We plan to start gathering entropy from
a time t3 ≈ 1st February 2016 in order to have a curve ready by Valentine’s Day.

All the elements on which both the Designer and the Standardizer commit
will be published on

https://cryptoexperts.github.io/million-dollar-curve/

This includes

– the latest version of this article (in case this version is not the final one),
containing an up-to-date list of Security criteria,

– Python3 code allowing to turn an ordered list of lottery draws into a seed,
– a Python3 implementation of the Filtering function,
– the exact list of lottery draws that will be considered.

After time t′3, we will publish on the same site all the elements required to
generate the Cryptosystem, allowing Anybody to verify our own results. This
includes the list of all the draw outcomes between t3 and t′3, so that a verifier does
not have to download all these results from the lotteries archives, thus making
verification much less painful. Of course, we encourage verifiers to actively check
the content of this list (we expect a careful verifier to check at least a few draws
of his choice).

7 Conclusion

In this article we presented a methodology to generate an elliptic curve in a
way that can be trusted by the end-users. Each step of the generation is either
justified by security or efficiency constraints, or randomized by the use of a non-
manipulable entropy source, which in our case are national lotteries. In the end,
introducing a trap in the curve itself requires to manipulate the draws of several
independent lotteries around the world, which we assume is hard, even for the
most powerful adversaries.

Of course, the same methodology could be used to generate curves with
different properties (for example, curves suitable for pairings) by simply changing
the Security criteria we use (see e.g. [20]), or to generate any sort of cryptographic
parameters or constants in which it could otherwise be possible to introduce a

https://cryptoexperts.github.io/million-dollar-curve/

32

trap (e.g., symmetric cryptography round constants). The only requirement is to
have a well defined set of Security criteria such that a random instance fulfilling
these criteria is secure with respect to the current state of the art attacks.

Even though this paper will serve as a basis to generate the parameters
of the Million Dollar Curve, its first purpose is to gather comments from the
cryptographic community about the methodology itself. Our objective is for the
Million Dollar Curve to inspire confidence to the greatest number. In that sense,
we want to integrate comments we receive in the methodology before committing
on the methodology and the Publicly verifiable RNG we will use. You can direct
any comment you have to curves@cryptoexperts.com and we will gladly listen.

Once all the comments are integrated and the Security criteria are updated,
we will commit on the methodology and the Publicly verifiable RNG (the exact
list of lotteries and draw dates) we will use to generate the Million Dollar Curve.
All the scripts and source code required to generate or verify the parameters will
be made available on the official website:

https://cryptoexperts.github.io/million-dollar-curve/

Acknowledgments

The authors would like to thank Antoine Joux for his invaluable comments on
previous versions of this work. We also thank Joseph Bonneau and Ivan Zuboff
for their diligent comments.

Commitments for the Million Dollar Curve “MDCurve201601”

– January 27, 2016, commitment on the design of MDCurve201601:

• the design is described in

https://cryptoexperts.github.io/million-dollar-curve/

specifications/mdcurve_201601/2016_01_27_million_dollar_

curve.txt;

• the SHA-256 sum of the file is

e9dd4baf0d351b5a64c59ed6b1efd3108094b3585e17a0e5350fb200500058d9.

– January 29, 2016, commitment on the seeding of MDCurve201601:

• the seeding is described in

https://cryptoexperts.github.io/million-dollar-curve/

specifications/mdcurve_201601/2016_01_29_million_dollar_

curve_seeding.txt;

• the SHA-256 sum of the file is

f8bdb5bd4957a2d65b567378bb32744d0d0573a77e4ef0247311a5a4b98744da.

mailto:curves@cryptoexperts.com
https://cryptoexperts.github.io/million-dollar-curve/
https://cryptoexperts.github.io/million-dollar-curve/specifications/mdcurve_201601/2016_01_27_million_dollar_curve.txt
https://cryptoexperts.github.io/million-dollar-curve/specifications/mdcurve_201601/2016_01_27_million_dollar_curve.txt
https://cryptoexperts.github.io/million-dollar-curve/specifications/mdcurve_201601/2016_01_27_million_dollar_curve.txt
https://cryptoexperts.github.io/million-dollar-curve/specifications/mdcurve_201601/2016_01_29_million_dollar_curve_seeding.txt
https://cryptoexperts.github.io/million-dollar-curve/specifications/mdcurve_201601/2016_01_29_million_dollar_curve_seeding.txt
https://cryptoexperts.github.io/million-dollar-curve/specifications/mdcurve_201601/2016_01_29_million_dollar_curve_seeding.txt

33

References

1. ECC Brainpool Arbeitsgruppe. ECC Brainpool Standard Curves and Curve
Generation, October, 19 2005. http://www.ecc-brainpool.org/download/

Domain-parameters.pdf.
2. Jean-Philippe Aumasson. Backdoors up my Sleeve. 8th issue of PoC||GTFO, June

2015. Source code available at https://github.com/veorq/numsgen.
3. The Beatles. With a Little Help from My Friends, 1967. https://en.wikipedia.

org/wiki/With_a_Little_Help_from_My_Friends.
4. Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records, February 2006.

http://cr.yp.to/ecdh.html.
5. Daniel J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Moti

Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryp-
tography - PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages
207–228. Springer Berlin Heidelberg, 2006.

6. Daniel J. Bernstein. Elliptic vs. Hyperelliptic, Part I, September 2006. http:

//cr.yp.to/talks.html#2006.09.20.
7. Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hülsing,

Eran Lambooij, Tanja Lange, Ruben Niederhagen, and Christine van Vredendaal.
How to manipulate curve standards: a white paper for the black hat. IACR -
Cryptology ePrint Archive, 2014. https://eprint.iacr.org/2014/571.

8. Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-
curve cryptography. Retrieved on the 6th of November, 2015. http://safecurves.
cr.yp.to/.

9. Daniel J. Bernstein and Tanja Lange. Faster Addition and Doubling on Elliptic
Curves. In Kaoru Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007,
volume 4833 of Lecture Notes in Computer Science, pages 29–50. Springer Berlin
Heidelberg, 2007.

10. Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. Dual EC: A Stan-
dardized Back Door. IACR - Cryptology ePrint Archive, July 2015. https:

//eprint.iacr.org/2015/767.
11. Lenore Blum, Manuel Blum, and Mike Shub. Comparison of Two Pseudo-Random

Number Generators. In David Chaum, Ronald L. Rivest, and Alan T. Sherman,
editors, Advances in Cryptology: Proceedings of CRYPTO ’82, pages 61–78, New
York, 1983. Plenum Press.

12. Lenore Blum, Manuel Blum, and Mike Shub. A Simple Unpredictable Pseudo-
Random Number Generator. SIAM J. Comput., 15(2):364–383, May 1986.

13. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In Janos Simon, editor, Proceedings of
the 20th Annual ACM Symposium on Theory of Computing, pages 103–112. ACM,
1988.

14. Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On Bitcoin as a public
randomness source. IACR - Cryptology ePrint Archive, December 2015. https:

//eprint.iacr.org/2015/1015.
15. Jeremy Clark and Urs Hengartner. On the Use of Financial Data as a Random

Beacon. In Douglas W. Jones, Jean-Jacques Quisquater, and Eric Rescorla, editors,
Electronic Voting Technology Workshop / Workshop on Trustworthy Elections,
EVT/WOTE ’10, August 2010.

16. Arel Cordero, David Wagner, and David Dill. The role of dice in election audits. In
IAVoSS Workshop On Trustworthy Elections (WOTE 2006). USENIX Association,
June 2006.

http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
https://github.com/veorq/numsgen
https://en.wikipedia.org/wiki/With_a_Little_Help_from_My_Friends
https://en.wikipedia.org/wiki/With_a_Little_Help_from_My_Friends
http://cr.yp.to/ecdh.html
http://cr.yp.to/talks.html#2006.09.20
http://cr.yp.to/talks.html#2006.09.20
https://eprint.iacr.org/2014/571
http://safecurves.cr.yp.to/
http://safecurves.cr.yp.to/
https://eprint.iacr.org/2015/767
https://eprint.iacr.org/2015/767
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2015/1015

34

17. Craig Costello and Patrick Longa. FourQ: Four-Dimensional Decompositions on a
Q-curve over the Mersenne Prime. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015, Part I, volume 9452 of Lecture Notes
in Computer Science, pages 214–235. Springer Berlin Heidelberg, 2015.

18. Clint Eastwood. Million Dollar Baby, 2004. http://www.imdb.com/title/

tt0405159/.
19. Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American

Mathematical Society, 44:393–422, 2007.
20. Jean-Pierre Flori, Jérôme Plût, Jean-René Reinhard, and Martin Eker̊a. Diversity

and Transparency for ECC. NIST ECC Workshop 2015, July 2015. https://

eprint.iacr.org/2015/659.
21. Steven D. Galbraith, Ping Wang, and Fangguo Zhang. Computing Elliptic Curve

Discrete Logarithms with Improved Baby-step Giant-step Algorithm. IACR -
Cryptology ePrint Archive, June 2015. https://eprint.iacr.org/2015/605.

22. Kristian Gjøsteen. Comments on Dual-EC-DRBG/NIST SP 800-90, Draft De-
cember 2005, March 16 2006. http://www.math.ntnu.no/~kristiag/drafts/

dual-ec-drbg-comments.pdf.
23. Mike Hamburg. Any interest in random curves? Curves Mailing List, June 2014.

https://moderncrypto.org/mail-archive/curves/2014/000216.html.
24. IETF. Publicly Verifiable Nomcom Random Selection, February 2000. RFC 2777.
25. Antoine Joux and Vanessa Vitse. Cover and Decomposition Index Calculus on El-

liptic Curves Made Practical - Application to a Previously Unreachable Curve over
Fp6 . In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology
- EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
9–26. Springer Berlin Heidelberg, 2012.

26. Marc Joye, Pascal Paillier, and Serge Vaudenay. Efficient Generation of Prime
Numbers. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2000, volume 1965 of Lecture Notes in Computer
Science, pages 340–354. Springer Berlin Heidelberg, 2000.

27. Donald E. Knuth. The Art of Computer Programming, volume 4A - Combinatorial
Algorithms - Part 1. Addison Wesley, 2011. Fourth printing, August 2013.

28. Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and
trx. IACR - Cryptology ePrint Archive, April 2015. https://eprint.iacr.org/

2015/366.
29. National Institute of Standards and Technology. Special Publication 800-90: Rec-

ommendation for random number generation using deterministic random bit gen-
erators, January 2012. First version June 2006, second version March 2007,
http://csrc.nist.gov/publications/PubsSPs.html#800-90A.

30. Monty Python. Monty Python’s Flying Circus, 1969 to 1974.
31. Queen. I Want to Break Free, 1984. https://en.wikipedia.org/wiki/I_Want_

to_Break_Free.
32. Michael O. Rabin. Transaction Protection by Beacons. Journal of Computer and

System Sciences, 27(2):256–267, 1983.
33. Lou Reed. Walk on the Wild Side, 1972.
34. Phillip Rogaway. The Moral Character of Cryptographic Work. IACR - Cryptology

ePrint Archive, December 2015. https://eprint.iacr.org/2015/1162.
35. Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-

knowledge proof systems. In Carl Pomerance, editor, Advances in Cryptology -
CRYPTO ’87, volume 293 of Lecture Notes in Computer Science, pages 52–72.
Springer, 1987.

http://www.imdb.com/title/tt0405159/
http://www.imdb.com/title/tt0405159/
https://eprint.iacr.org/2015/659
https://eprint.iacr.org/2015/659
https://eprint.iacr.org/2015/605
http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
https://moderncrypto.org/mail-archive/curves/2014/000216.html
https://eprint.iacr.org/2015/366
https://eprint.iacr.org/2015/366
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
https://en.wikipedia.org/wiki/I_Want_to_Break_Free
https://en.wikipedia.org/wiki/I_Want_to_Break_Free
https://eprint.iacr.org/2015/1162

35

36. Bruce Schneier. The NSA Is Breaking Most Encryption on the Internet, September
5 2013. See the comment posted on September 5, 2013 4:07 PM, https://www.
schneier.com/blog/archives/2013/09/the_nsa_is_brea.html#c1675929.

37. Berry Schoenmakers and Andrey Sidorenko. Cryptanalysis of the Dual Elliptic
Curve Pseudorandom Generator. IACR - Cryptology ePrint Archive, May 2006.
https://eprint.iacr.org/2006/190.

38. Dan Shumow and Niels Ferguson. On the Possibility of a Back Door in the NIST
SP800-90 Dual Ec Prng. CRYPTO 2007 Rump Session, August 2007. http:

//rump2007.cr.yp.to/15-shumow.pdf.
39. Cat Stevens. Wild World, 1970.
40. BADA55 Research Team. Brainpool curves. 2015.09.27 version of http://bada55.

cr.yp.to/brainpool.html.
41. Wikipedia. Mixed-radix, December 2015. https://en.wikipedia.org/wiki/

Mixed_radix.
42. Wikipedia. Nothing up my sleeve number, December 2015. https://en.

wikipedia.org/wiki/Nothing_up_my_sleeve_number.
43. Accredited Standards Committee X9. American National Standard X9.62-1998,

Public Key Cryptography For The Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA), 1998. Working Draft.

A Compressing Points on Edwards Curves

Theorem 1 (Adapted from Theorem 2.1 of [5]). Let p be a prime number
such that p ≥ 5. Let d ∈ Fp such that d is not a square in Fp. Let E(K) be the
elliptic curve defined by

x2 + y2 = 1 + dx2y2

over a field K ∈ {Fp,Fp2}. Define the projection

Y0 : E(Fp2) −→ Fp2
(x, y) 7−→ y.

For any q ∈ Fp there are at most two distinct points Q1 and Q2 on E(Fp2) such
that Y0(Q1) = Y0(Q2) = q. Moreover, for any integer n we have Y0(nQ1) =
Y0(nQ2), and this value lies in Fp.

Proof. Let d, q ∈ Fp where d is not a square in Fp. Note that necessarily dq2−1 6=
0: it trivially holds for q = 0, and when q 6= 0, an equality would imply that
d = (1/q)2 is a square.

Next, consider the equation α+ q2 = 1 + dαq2 in Fp. Since dq2 − 1 6= 0, the
latter equation admits only one solution in Fp, that is

α =
q2 − 1

dq2 − 1
.

– Case 1: α is a square in Fp. Let r,−r ∈ Fp be the two square roots of α.
Since α is the only solution of α+ q2 = 1 + dαq2 and since ±r are the only
square roots of α, then ±r are the only solutions of x2 + q2 = 1 +dx2q2, and

{Q ∈ E(Fp2) : Y0(Q) = q} = {(r, q), (−r, q)}.

https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html#c1675929
https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html#c1675929
https://eprint.iacr.org/2006/190
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://bada55.cr.yp.to/brainpool.html
http://bada55.cr.yp.to/brainpool.html
https://en.wikipedia.org/wiki/Mixed_radix
https://en.wikipedia.org/wiki/Mixed_radix
https://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
https://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number

36

Moreover, for any integer n,

Y0(n(−r, q)) = Y0(n(−(r, q))) = Y0(−(n(r, q))) = Y0(n(r, q)).

Finally, since (r, q) ∈ E(Fp), then n(r, q) ∈ E(Fp) and Y0(n(r, q)) ∈ Fp.
– Case 2: α is not a square in Fp. Let δ ∈ Fp be any non-square element and

consider Fp2 as Fp[
√
δ]. Since α/δ is a square in Fp, the two roots of α can

be denoted r
√
δ and −r

√
δ. Since α is the only solution of α+ q2 = 1 +dαq2

and since ±r
√
δ ∈ Fp2 are the only square roots of α, then ±r

√
δ ∈ Fp2 are

the only solutions of x2 + q2 = 1 + dx2q2, and

{Q ∈ E(Fp2) : Y0(Q) = q} = {(r
√
δ, q), (−r

√
δ, q)}.

Moreover, for any integer n,

Y0(n(−r
√
δ, q)) = Y0(n(−(r

√
δ, q))) = Y0(−(n(r

√
δ, q))) = Y0(n(r

√
δ, q)).

Finally, it is easy to see that
√
δFp × Fp with the Edwards addition law

is a subgroup of E(Fp2). Therefore, (r
√
δ, q) ∈

√
δFp × Fp implies that

n(r
√
δ, q) ∈

√
δFp × Fp, an thus that Y0(n(r

√
δ, q)) ∈ Fp. ut

B Frequently Asked Questions

Q1. Is Million Dollar Curve nothing more than “yet another safe
curve”?

Yes and no.

The Million Dollar Curve in itself is just another safe curve, but it is gener-
ated using the methodology proposed in this paper. Note that this method-
ology allows to generate parameters everyone can trust for new cryptosystem
standards, but also in any other situation requiring verifiable randomness.

Q2. Is there anything wrong with Curve25519?

No.

We, at CryptoExperts, actually use Curve25519 and recommend it to our
partners. Yet, we think that people should not rely on the same few safe
curves that are currently out. Our methodology allows to easily produce
safe alternatives.

Q3. Curve25519 vs. Million Dollar Curve

Curve25519 was designed to be as fast as possible, with no security compro-
mise. This is both a strength and a potential weakness:
– a strength because it gives a valid argument that no trapdoor was intro-

duced in the design,
– a potential weakness because Curve25519 uses a very specific prime field.

As of now, no attack exploiting this specificity is known.

37

For applications where speed is paramount, Curve25519 is probably the best
option. But for most applications, where losing a little on the efficiency side
is “not a big deal”, Million Dollar Curve is probably the safest choice.

See also the answer by Ruggero on Stack Exchange.

Q4. What if a government agency rigs a few lotteries?

This is not an issue.

Our parameter generation process was specifically designed to avoid this
kind of problem. As explained in Section 4.4, in order to manipulate the
parameter generation, an adversary has to rig all the last lottery draws. We
mitigate this risk by relying on independent lotteries from various countries
around the world.

Q5. Do you really think that national lotteries are unimpeachable?

Yes and no.

Most national lotteries follow a strict protocol which is specifically designed
to avoid manipulations (certified drawing machines, supervision of a bailiff,
legal process, etc.). It is pretty obvious that in the past some lotteries have
been manipulated, but manipulations with financial motive are not a concern
for us (at most, a few bits of entropy are lost). Besides, as explained in the
previous answer, an adversary would have to manipulate all the last lottery
draws.

Q6. How can I verify the parameters if a lottery archive is no longer
available?

These archives are usually duplicated in several places over the Internet
or sometimes printed in newspapers. If at a given time in the future the
result of a drawing becomes completely unavailable, verification will become
impossible.

However, the lotteries that have been selected are well established and will
most certainly continue to exist for some time. During this period, everyone
will be able to fully verify/re-generate the Million Dollar Curve, which in
itself is a convincing argument for later use.

Q7. I have never heard about half of these lotteries, how do I even
know they are real?

You can probably verify that lotteries from your own country actually exist:
you might even have played them before hearing about Million Dollar Curve.
Your friends in Mauritius, Canada, and New Zealand can certainly confirm
the same thing.

Besides, lotteries are such popular games that “faking” one in a convincing
way is probably impossible without being noticed at some point.

http://crypto.stackexchange.com/questions/31629/curve25519-vs-million-dollar-curve/31654#31654

38

Q8. What if a lottery does not perform the expected draws during
Phase IV of the generation process?

This situation is already taken into account in our generation process and
the scripts we provide, so this is not a problem. The missing draws are simply
ignored.

	Trap Me If You Can

